

jKQL

User’s Guide
Version 11.2

Document Number: JKQLUG11.008

© 2019-2024 meshIQ

Document Title: jKQL User’s Guide

Document Release Date: February 2024

Document Number: JKQLUG11.008

Published by:

R&D Department

meshIQ

88 Sunnyside Blvd, Suite 101

Plainview, NY 11803

Copyright © 2019–2024. All rights reserved. No part of the contents of this document may be produced or

transmitted in any form, or by any means without the written permission of meshIQ.

Confidentiality Statement: The information within this media is proprietary in nature and is the sole property

of meshIQ. All products and information developed by meshIQ are intended for limited distribution to

authorized meshIQ employees, licensed clients, and authorized users. This information (including software,

electronic and printed media) is not to be copied or distributed in any form without the expressed written

permission from meshIQ.

Acknowledgements: The following terms are trademarks of meshIQ in the United States or other countries or

both: AutoPilot, AutoPilot M6, M6 Web Server, M6 Web Console, M6 for WMQ, MQControl, Navigator, XRay.

The following terms are trademarks of the IBM Corporation in the United States or other countries or both:

IBM, MQ, WebSphere MQ, WIN-OS/2, AS/400, OS/2, DB2, Informix, AIX, and z/OS.

Java, J2EE, and the Java Logos are trademarks of Sun Microsystems Inc. in the United States or other countries,

or both.

InstallAnywhere is a trademark or registered trademark of Flexera Software, Inc.

This product includes software developed by the Apache Software Foundation (http://www.apache.org/),

including Derby Database Server. The Jakarta Project" and "Tomcat" and the associated logos are registered

trademarks of the Apache Software Foundation.

Intel, Pentium and Intel486 are trademarks or registered trademarks of Intel Corporation in the United States,

or other countries, or both.

Microsoft, Windows, Windows NT, Windows XP, the Windows logos, Microsoft SQL Server, and Microsoft Visual

SourceSafe are registered trademarks of the Microsoft Corporation.

UNIX is a registered trademark in the United States and other countries licensed exclusively through X/Open

Company Limited.

Mac, Mac OS, and Macintosh are trademarks of Apple Computer, Inc., registered in the U.S. and other countries.

"Linux" and the Linux Logos are registered trademarks of Linus Torvalds, the original author of the Linux kernel.

All other titles, applications, products, and so forth are copyrighted and/or trademarked by their respective

authors.

Oracle, Java, and MySQL are registered trademarks of Oracle and/or its affiliates.

Other company, product, and service names may be trademarks or service marks of others.

http://www.apache.org/

JKQLUG11.008 iii © 2019–2024 meshIQ

Table of Contents
CHAPTER 1: INTRODUCTION .. 1

1.1 HOW THIS GUIDE IS ORGANIZED .. 1
1.2 HISTORY OF THIS DOCUMENT .. 1

CHAPTER 2: DATA MODEL .. 3

2.1 DEFINITIONS ... 3
2.2 ITEM TYPE OVERVIEW .. 3
2.3 FIELDS .. 6

CHAPTER 3: JKQL ... 9

3.1 DATA TYPES.. 9
3.1.1 Maps .. 9
3.1.2 Variants ... 10

3.2 JKQL EXPRESSIONS ... 10
3.2.1 Literals ... 10
3.2.2 Date and Time Expressions ... 13
3.2.3 Operators .. 17

3.3 FUNCTIONS .. 23
3.3.1 Built-in Scalar Functions .. 24
3.3.2 Built-in Spanning Functions .. 28
3.3.3 Built-in Aggregate Functions ... 30
3.3.4 Built-in Analytic Functions ... 34

3.4 STATEMENT SYNTAX .. 37
3.4.1 Common Elements ... 37
3.4.2 SignIn ... 43
3.4.3 Use ... 44
3.4.4 Get .. 44
3.4.5 Find .. 54
3.4.6 Compare .. 56
3.4.7 Insert, Update, Upsert .. 57
3.4.8 Delete ... 58
3.4.9 Reset ... 59
3.4.10 Enable / Disable .. 59
3.4.11 Grant .. 60
3.4.12 Revoke .. 61
3.4.13 Purge .. 62
3.4.14 Compute .. 62
3.4.15 Invoke .. 63
3.4.16 Train ... 65

3.5 JKQL FIELDS ... 65
3.5.1 Primary Key Fields .. 65
3.5.2 Fully Qualified Name (FQN)... 66
3.5.3 Criteria ... 67
3.5.4 Objectives .. 67
3.5.5 SetSequence .. 69
3.5.6 jKQL (Generic jKQL Statement) ... 69
3.5.7 EffectiveRole .. 69

CHAPTER 4: CONCEPTS ... 70

jKQL User’s Guide Table of Contents

JKQLUG11.008 iv © 2019–2024 meshIQ

4.1 IMPLICIT DATE FILTERING... 70
4.2 SEARCHING... 71
4.3 SET MEMBERSHIP ... 72

4.3.1 Objectives .. 73
4.4 RELATIVES .. 73

4.4.1 Encloses ... 73
4.4.2 Send To .. 74
4.4.3 Acts On ... 74
4.4.4 Correlated ... 75

4.5 COMPUTED FIELDS .. 75
4.6 ACTIONS .. 76

4.6.1 Provider Type .. 76
4.6.2 Action ... 78
4.6.3 Formatting... 78

4.7 VIEWS AND VIEWTEMPLATES .. 81
4.7.1 View Queries ... 81
4.7.2 Schedule .. 82
4.7.3 Result History .. 82
4.7.4 Options .. 83
4.7.5 Limitations .. 84

4.8 STATEMENT CHAINS .. 84
4.8.1 Examples ... 85
4.8.2 Limitations .. 87

CHAPTER 5: ACCESS CONTROL .. 88

5.1 LEVELS ... 88
5.2 EFFECTIVE ROLES .. 88
5.3 ENTITIES ... 88
5.4 ITEMS ... 88
5.5 MEMBERSHIP .. 89
5.6 ADMINISTRATORS .. 89
5.7 OPERATION .. 89
5.8 INQUIRIES ... 90

CHAPTER 6: ADMINISTRATION .. 91

6.1 DATA MODEL ... 91
6.2 JKQL FIELDS ... 91

6.2.1 Admin Item Names... 91
6.2.2 Access Token Options... 91
6.2.3 Repository Options ... 93
6.2.4 Access Token Quotas .. 93

6.3 ADMIN STATEMENT SYNTAX ... 93
6.3.1 Common Elements ... 93
6.3.2 Create .. 94
6.3.3 Alter .. 94
6.3.4 Drop ... 94

6.4 VOLUMES ... 95
6.5 ACCESS TOKENS .. 96

CHAPTER 7: LICENSING .. 99

7.1 DATA MODEL ... 99
7.1.1 Features ... 99

jKQL User’s Guide Table of Contents

JKQLUG11.008 v © 2019–2024 meshIQ

7.1.2 Effective License .. 99
7.2 JKQL FIELDS .. 100

7.2.1 License ... 100
7.2.2 Features ... 100
7.2.3 Quotas ... 100
7.2.4 Effective Values ... 101

7.3 LOAD STATEMENT SYNTAX .. 103

CHAPTER 8: EXTENDING JKQL .. 104

8.1 EXTERNAL DATA SOURCE .. 104
8.1.1 External Data Source Definition ... 104
8.1.2 External Field Types.. 105
8.1.3 External Item Types .. 106
8.1.4 External Item Fields .. 106
8.1.5 Synonyms .. 107
8.1.6 Configuration .. 108
8.1.7 Example ... 108

8.2 EXTERNAL ACTION PROVIDER TYPES .. 110
8.2.1 Provider Type Definition .. 110
8.2.2 Provider Type Properties ... 110
8.2.3 Configuration .. 111
8.2.4 Example ... 111

8.3 EXTERNAL JKQL FUNCTIONS ... 112
8.3.1 Function Definition ... 112
8.3.2 Configuration .. 112
8.3.3 Example ... 112

CHAPTER 9: JKQL SCRIPTS .. 114

9.1 DEFINING .. 114
9.1.1 Parameters.. 114
9.1.2 Options .. 114

9.2 EXECUTING JKQL SCRIPTS .. 115
9.3 API REFERENCE ... 115

9.3.1 Types .. 116
9.3.2 Functions ... 152
9.3.3 Directives ... 155

9.4 EXAMPLES ... 155

INDEX ... 158

jKQL User’s Guide Table of Contents

JKQLUG11.008 vi © 2019–2024 meshIQ

This page intentionally left blank

JKQLUG11.008 1 © 2019–2024 meshIQ

Chapter 1: Introduction

Welcome to the jKQL User’s Guide. jKool Query Language (jKQL) defines the syntax of

statements used for manipulating data while using the meshIQ Platform.

1.1 How this Guide is Organized

Chapter 1: Introduction to the jKQL User’s Guide

Chapter 2: Data model description

Chapter 3: Data types, jKQL expressions and functions are presented

Chapter 4: Explanation of concepts

Chapter 5: Information on access control

Chapter 6: Administration data model is explained

Chapter 7: Provides information on licensing

Chapter 8: Information on adding user-defined elements

Chapter 9: Defining jKQL Scripts for custom processing

Index: Contains document index

1.2 History of this Document

Document History

Release Date Document Number Summary

October 2022 JKQLUG14.005

Updates throughout for version 1.5.

Adding references to the XRay Machine Learning Guide to

3.3.4.1 Machine Learning Functions and 3.4.1.8 Train

sections.

Updates to Formatting section of chapter 4 (Alerts); Added

Get examples to Filters section of chapter 3 (Statement

Syntax); Renamed "Run jKQL Script in Chain" to "Invoke

Provider, Action, jKQL Script in Chain.

Added Percentile to tables 18 and 19.

Specifying a different repository for Dataset entries (in

Result History section of Views and ViewTemplates

July 2023 JKQLUG14.006

Updated Get Info example; updated Enable/Disable

statements to reflect that Providers and Actions require

an Organization Name; removed ParentID from list of

Fully Qualified Name (FQN) fields; added ActionResult to

Table 28. Formatting – Field Values; added

applydfltdatefilter to Table 41. External Item Attributes;

added the following to Table 76. Script Functions:

ResultSet executeJKQLInRepo (String repoid, String jkql);

jKQL User’s Guide Chapter 1: Introduction

JKQLUG11.008 2 © 2019–2024 meshIQ

Document History

Release Date Document Number Summary

ResultSet executeJKQLOnResultInRepo (String repoid,

String jkql, ResultSet rs); and void upsertInRepo (String

repoid, JKQLItem fieldValues). Removed Subanomaly from

Table 19.

December

2023
JKQLUG11.007 meshIQ Platform branding and label changes.

August 2024 JKQLUG11.008

Changes for version 11.1: Updates to Chapter 3

Filters and Purge (adding date filters), and Invoke

sections, Chapter 6 Access Tokens (Access and

Streaming token syntax), and Chapter 9 Executing

jKQL scripts section.

Changes for version 11.2: Removal of references to

subscriptions, providers, and triggers for upcoming

alerting changes (including removal of sections 3.4.9

Subscribe, 4.6 Subscriptions, 4.9.1 Provider, and

4.9.3 Trigger).

JKQLUG11.008 3 © 2019–2024 meshIQ

Chapter 2: Data Model

2.1 Definitions

The Data Model contains the following terms:

• Items – these are what the statements act on. There are two classes of Items:

o Physical – these items correspond to actual data store items. Physical items

can be inserted/updated and deleted, in addition to queried and compared.

o Logical – these Items are derived from Physical items. Logical items can only

be queried and compared.

• Fields – represent the properties of an item. Each item supports a defined set of

fields. Some items support a properties field, which is a map of {key,value} pairs,

allowing for custom properties.

2.2 Item Type Overview

The data model consists of the following item types.

Table 1. Item Types

Activities
A collection of related Events and/or sub-activities, as identified by

instrumented application.

Events
An Event represents a distinct application operation or statement,

optionally containing associated message data.

Snapshots
A Snapshot is a collection of information, as key/value pairs,

identified by name and the time the information was collected.

Sources

A Source represents the origin of Events, Activities, and Snapshots. A

Source is identified by a string known as its Fully-Qualified Name

(FQN, See Fully-Qualified Name (FQN) for details), which defines its

ENCLOSES relationships (See Relatives).

Resources

A Resource represents the object that Events, Activities and

Snapshots act on, or execute within. It can be just a simple name or

an FQN string (See Fully-Qualified Name (FQN)), which will identify the

type of resource, as well as its name. Supported resource types are:

• DATASTORE

• CACHE

• SERVICE

• QUEUE

• FILE

• TOPIC

Dictionaries
A Dictionary entry represents a free-form record. It is essentially a

named collection of key/value pairs. The specific keys are

jKQL User’s Guide Chapter 2: Data Model

JKQLUG11.008 4 © 2019–2024 meshIQ

Table 1. Item Types

application- and/or user-dependent. The type of the keys is STRING.

The values can be one of the following: BOOLEAN, CLOB, DECIMAL,

INTEGER, STRING, TIMEINTERVAL or TIMESTAMP. Dictionary entries

differ from the others in that they are not tied to a specific

repository. They can be associated with several repositories, or not

associated with any repositories.

Sets

A Set is used to identify Activities and Events that meet specific

criteria, as well as to define the objectives, or conditions, that the

items that match the set should meet. The critical attributes of a Set

are:

• Criteria – defines the conditions that must be met for

inclusion in the set. See Criteria for specifics on format of set

condition.

• Objectives – define the set of conditions that must be met (or

should not be met) by members of the Set. See Objectives for

specifics on defining objectives.

• Scope – defines how to include Activities and Events into the

set, and is one of:

o Singular – Only the Activities and Events that directly

match the Set Criteria are included in the set. These

types of sets are commonly referred to as

“Milestones”.

o Related – All Activities and Events that are “related”

(stitched to) to those that directly match the Criteria

are included. These types of sets are commonly

referred to as “Groups”.

• Sequence – for Related sets, defines the expected sequence

of Singular subsets.

Relatives

Relatives define the observed relationships between event and

activity Sources (FQN Components), as well as the relationships

between Singular Sets. The main relationships that are identified

are:

• ENCLOSE – parent Source encloses, or contains, the child

Source (e.g., DataCenter encloses Server indicates that the

specified Server is in the specified DataCenter)

• SEND_TO – parent Source sends a data message to the child

Source (e.g., Application A sends to Application B indicates

that Application A has sent a message and Application B has

received the same message), or parent Set sends a data

message to child Set.

jKQL User’s Guide Chapter 2: Data Model

JKQLUG11.008 5 © 2019–2024 meshIQ

Table 1. Item Types

• ACTS_ON – parent Source “acts on” or “manipulates” child

Resource (e.g., Application A acts on Resource B). This can

be one of the subtypes below if the Sources are marked as

send/receive operations:

o ACTS_ON_WRITE – parent Source wrote to child

Resource

o ACTS_ON_READ – parent Source read from child

Resource

(See Relatives for additional details)

Input Data Rules

Input data rules allow for field value calculations at data ingest time.

Both built-in fields and custom properties can be computed from

other built-in fields or custom properties, and also from other

computed fields. The computed value could be either used to

replace any value that’s already there or appended to any existing

value(s). By default, the input data rules are applied to all incoming

Activities, Events, Snapshots, and Datasets. However, an optional set

of items and/or criteria (as a jKQL filter expression) can be defined,

so that the rules are only applied to specific input data.

Actions
An Action represents a task to execute, and is an instance of a

particular Provider Type, defining the values required by the

specified Provider Type.

Jobs Job entries represent the state of past, current, and scheduled jobs.

Logs

Log entries are records of actions occurring in a system. The

following log categories are supported:

• ERROR – errors that occurred during the processing of jobs,

data streaming, user queries

• QUERY – user queries executed

• AUDIT – user logins and other security operations

• ML – Machine Learning-related actions

• SCRIPT – jKQL Script-generated log entries

GENERAL – other items not fitting into the above categories

ViewTemplates

• A ViewTemplate defines a generic template for a View. It

defines a jKQL query (optionally with substitutable

parameters). See Views and View Templates for details.

Views

A View represents a named query, providing a fixed result structure.

The implementation is analogous to an SQL Materialized View. The

query is either defined explicitly in the View definition itself or is

inherited from the ViewTemplate on which it is based. In the case of

the latter, the View definition would include bindings for the specific

parameters required by ViewTemplate. Views are evaluated on a

jKQL User’s Guide Chapter 2: Data Model

JKQLUG11.008 6 © 2019–2024 meshIQ

2.3 Fields

Items are defined as a collection of fields. There is a global set of defined fields, with each

field having a predefined data type.

Each type of item contains a subset of the global field set. Therefore, when a field is

supported in more than one item type, the field has the same data type in all items in

which it’s supported. For example, the field Location is supported in Events, Activities, and

Snapshots. In all three item types, Location has the same data type.

In addition, field values can either be scalar values, or a list of scalar values. Also, the same

field in different item types can have different formats. Continuing with the Location field,

in Events and Snapshots, Location is a string (a single location), where in Activities, Location

is a list of strings (list of all locations activity occurred in).

There are some fields that are considered to be “derived fields”. These are fields that are

“read-only”, i.e., cannot be set via an Upsert statement. Their values are derived from other

field values. An example of this is ApplicationName, which is derived from the application

component of the SourceFQN field.

There is one other type of field that we have not discussed yet, and that is map fields. A

map field is one whose value is a map consisting of {key,value} pairs. Here, the value is

always a scalar value. For most map fields, the set of key values is defined by jKQL.

There is a pair of map fields that work together: Properties and ValueTypes. These two

fields allow for custom properties for an item, with the key being the property name. The

value for this property is in the Properties field. It is the Properties field that defines

the set of custom properties. The ValueTypes field can be used to define the “format”, or

how to logically interpret the value. This is not necessarily the data type, although it could

Table 1. Item Types

defined interval, with the results cached for quick retrieval. See

Views and View Templates for details.

MLModels
MLModels are used for Machine Learning. In order to run Machine

Learning on data, a ”model” must be created. Each model has

specific attributes, which are stored in MLModel.

Datasets

Datasets contain freeform, unanalyzed data. Entries to the Datasets

table are saved as is, with no additional processing. They can be

used to store aggregations of other data items (Events, Snapshots,

etc.), or can be used to store simple raw data. Their primary

purpose is to define sets of data for Machine Learning.

Scripts

Scripts define custom processing, analogous to SQL Stored

Procedures. Scripts are similar to Dictionary entries in that they are

not tied to a specific repository, but can be made available to all

repositories, or only to a set of specific ones. See jKQL Scripts for

details.

jKQL User’s Guide Chapter 2: Data Model

JKQLUG11.008 7 © 2019–2024 meshIQ

provide an indication of the data type. The ValueTypes map is assumed to have a subset

of the keys from Properties, such that Properties('X') contains the value for custom

property X, and ValueTypes('X') contains the format for custom property X. There is no

defined format for what the value type is, and therefore can be anything that makes sense

for the user.

For example, there could be a custom property named ExecuteTime with a value of 12345,

so the numeric value 12345 will be stored in the Properties field. In this example, the

data type of 12345 is INTEGER. But what does it represent? A number of minutes?

Seconds? Milliseconds? This is where the ValueTypes field comes in. You can store an

entry in ValueTypes for property ExecuteTime with the value 'millisec', which would

mean to interpret the value as a number of milliseconds.

jKQL User’s Guide Chapter 2: Data Model

JKQLUG11.008 8 © 2019–2024 meshIQ

This page intentionally left blank

JKQLUG11.008 9 © 2019–2024 meshIQ

Chapter 3: jKQL

3.1 Data Types

Item fields are one of the following data types:

• STRING – sequence of characters (length limited to 30K)

• CLOB – unformatted and unindexed sequence of characters (length limited to 2G)

• INTEGER – exact numeric value with no fractional part

• DECIMAL – double precision approximate numeric value

• ENUM – values come from a predefined set of values

• BOOLEAN – either true or false

• TIMESTAMP – value containing both a date and time part. Time part supports

microsecond (10-6) resolution

• TIMEINTERVAL – value representing a period of time, with microsecond resolution

• BINARY – sequence of bytes

• MAP – value is a collection of {key,value} pairs

• VARIANT – values can be of any of the other data types

3.1.1 Maps
As discussed briefly above, map fields are a collection of {key,value} pairs, essentially a

collection of fields in a single field. The keys are always strings. The values can be one of 7

types:

• BOOLEAN

• STRING

• CLOB

• INTEGER

• DECIMAL

• TIMESTAMP

• TIMEINTERVAL

Map fields can be used just like other fields: as query fields, filters, grouping fields, sorting

fields. When used as a query or sort field, the map can be operated on as a whole, by just

listing the map field name, or specific keys can be listed, to only apply query to the

specified fields. All other references to map fields (filters, grouping), have to refer to a

specific key.

When applying a function or operation to a map field, the function is applied to each

individual key. When aggregating on map fields, each individual key is aggregated

separately, with the result being a map containing the aggregate of each individual key.

Syntax for referencing map fields is:

field_name [(key_name)]

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 10 © 2019–2024 meshIQ

Examples

Properties – refers to entire Properties field, processing all keys in the map

Properties('key1') – process key ‘key1’ (maps that do not have a ‘key1’ are

ignored)

Properties('key1', 'key2') – process keys ‘key1’ and ‘key2’

When issuing queries referencing one specific Properties field key, Properties can be

omitted, allowing the Property keys (i.e., custom fields) to be referenced directly. For

instance, Get Event Fields EventName, MyProp is interpreted as: Get Event Fields

EventName, Property(‘MyProp’) As ‘MyProp’. However, there are certain situations

where the Property qualifier must be used:

• Property key is the same as (or an alias for) a built-in field

• Property key is a jKQL keyword

• Property key does not start with a letter

If a Property key contains spaces or other “special” characters, these special characters

must be escaped (prefixed with ‘\’), or the Property qualifier must be used.

3.1.2 Variants
Variant fields can store values of any of the other data types. When processing the results

for a Variant field, the data type of each result entry can only be determined when result is

created. As a result, validations based on data type can only be done at query execution

time.

3.2 jKQL Expressions

3.2.1 Literals
This section describes how to write literal values in jKQL. These include strings, numbers,

date and times, time intervals, and Boolean values.

Table 2. Literals

Labels

A label is a sequence of characters, delimited by whitespace. Labels are not

surrounded with quotes, and therefore must be words that the jKQL parser

recognizes. In many places they are interchangeable with strings, but not

always. In general, if in doubt, use a string vs. a label.

Strings

Clobs

A string is a sequence of characters, surrounded with quotes. jKQL supports

using either single or double quotes, with the only restriction being that

closing quote character must match opening quote character. To specify the

quote character within the string itself, it needs to be escaped with a ‘\’

(backslash). To include the backslash character itself, it must be escaped as

well (e.g., ‘\\’).

Examples

Activity

'a single-quoted string'

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 11 © 2019–2024 meshIQ

Table 2. Literals

'a single-quoted string with an escaped \' and \\'

"a double-quoted string with ' within it"

Numbers

Two types of numbers are supported: exact-value integers and approximate

floating-point decimal numbers. Integer constants are a sequence of digits,

optionally preceded with a sign (+ or -). Decimal numbers can be specified by

using a sequence of digits with a ‘.’ as the decimal separator, or by using

scientific notation.

Examples

123.456

1.2E-3

Numeric constants can also be followed by a scaling factor. The following scaling factors

are supported:

3.2.1.1 Dates and Times

Timestamps represent a specific date and time, with up to microsecond (10-6) resolution.

They can be specified in one of several forms.

Timestamps can be expressed as a numeric value, representing the number of

microseconds since '1970-01-01 00:00:00' UTC (known as ‘epoch’).

Timestamps can also be expressed as a string in the form:

yyyy-MM-dd HH:mm:ss.SSSSSS ±HH:mm

where:

Table 3. Scaling Factors

 K Thousand (103) ex: 4K = 4,000

 G Thousand (103) ex: 4G = 4,000

 M Million (106) ex: 4M = 4,000,000

 B Billion (109) ex: 4B = 4,000,000,000

 T Trillion (1012) ex: 4T = 4,000,000,000,000

 KB Kilobyte (1024) ex: 4KB = 4,096

 MB Megabyte(10242) ex: 4MB = 4,194,304

 GB Gigabyte (10243) ex: 4GB = 4,294,967,296

 TB Terabyte (10244) ex: 4TB = 4,398,046,511,104

Table 4. Timestamps Expressions

yyyy 4-digit year

MM 2-digit month (01 – 12)

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 12 © 2019–2024 meshIQ

When specifying a timestamp string, you can specify the full timestamp string, or any

substring, starting from the beginning. Missing components are assumed to be 0.

Examples

 A full timestamp string is:

2016-02-28 13:32:56.934123 +05:00

In addition, any substring of this can be specified. For example:

2016-02-28 13:32:56.934 +05:00

2016-02-28 13:32:56 +05:00

2016-02-28 13:32 +05:00

If time zone is not specified, the timestamp string is interpreted based on local time zone

where the timestamp string is being evaluated (most likely on the backend server).

3.2.1.2 Time Intervals

Time interval fields represent a period of time, with up to microsecond (10-6) resolution.

They can be specified either as a numeric value, representing total number of

microseconds, or as a string in the form:

d HH:mm:ss.SSSSSS

where:

Table 4. Timestamps Expressions

dd 2-digit day of the month (01 – 31)

HH 2-digit hour of the day (00 – 23)

mm 2-digit minutes of the hour (00 – 59)

ss 2-digit seconds within the minute (00 – 59)

SSSSSS 6-digit microseconds within second (0 – 999999)

HH:mm Time zone, as an offset from UTC

Table 5. Time Intervals Expressions

d Number of days

HH Number of hours (00 – 23)

mm Number of minutes of the hour (00 – 59)

ss Number of seconds (00 – 59)

SSSSSS Number of microseconds (0 – 999999)

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 13 © 2019–2024 meshIQ

When specifying a time interval string, you can specify the full time interval string, or any

substring, starting from the beginning. Missing components are assumed to be 0.

Examples

A full time interval string is:

2 13:32:56.934123

In addition, any substring of this can be specified. For example:

2 13:32:56.934

2 13:32:56

2 13:32

In addition, a longer string form is supported, where time intervals can be expressed as

follows:

2 days 13 hours 32 minutes 56 seconds 934 milliseconds

2 days 32 minutes

This is certainly more verbose, but this format is more useful when you want to say things

like:

1 hour

2.5 days (which is same as 2 days 12 hours)

In the table below three more types of literals are described.

3.2.2 Date and Time Expressions
In addition to specifying dates and times as numeric or string literals as described above,

dates and times can be expressed using date and time expressions, relative to the current

date and time. Date and time expressions include either a calendar unit or a day of the

week, along with an optional number indicating how many to apply and/or an optional time

of the day. Some date and time expressions represent a specific date and time, whereas

others represent a date/time range.

The following date units are supported:

Table 6. Literals

Booleans

Boolean constants are the labels true and false, which can be

specified in any case, but must not be surrounded with quotes, as

this would cause them to be interpreted as a string.

Binary Binary constants are specified as Base64-encoded strings (in quotes).

Null Values

The NULL value means “no data.” NULL can be written in any case, but

must not be surrounded with quotes, as this would cause it to be

interpreted as a string. You can also use the label EMPTY as a

synonym for NULL.

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 14 © 2019–2024 meshIQ

• YEAR[S]

• MONTH[S]

• WEEK[S]

• DAY[S]

• HOUR[S]

• MINUTE[S]

• SECOND[S]

• MILLISECOND[S]

• MICROSECOND[S]

The days of the week are also recognized, either in singular or plural (e.g., MONDAY or

MONDAYS). In addition, relative dates can be expressed (e.g., TODAY, TOMORROW, YESTERDAY).

Times of the day can be specified as 24-hour times, 12-hour times, or with symbolic labels

(e.g., NOON). Some examples of specifying the time of day:

9 PM

NOON (same as 12 PM)

MIDNIGHT (same as 12 AM)

9:30 (same as 9:30 AM)

9:30 PM

19:30 (same as 9:30 PM)

The following date and time expressions are supported:

Table 7. Date and Time Expressions

number {date_unit |

day_of_week} AGO

[AT time_of_day]

Represents a specific date/time that is the number of date_units or

day_of_weeks from current date/time. If time_of_day is specified,

then it represents that specific time of the day of the date that

date_unit or day_of_week resolves to. For example: 10 MINUTES

AGO represents the exact time that is 10 minutes before the current

time; 2 MONDAYS AGO AT 9AM represents 9:00 am on the 2nd Monday

prior to the current date.

LAST {date_unit |

day_of_week} [AT

time_of_day]

Behavior depends on whether date_unit or day_of_week is

specified.

date_unit:

Represents a period of time starting at the previous date_unit from

the current time that is date_units long. If time_of_day is

specified, then it represents that specific time of the day of the base

date that date_unit resolves to. For example: LAST 10 MINUTES

represents the period of time starting at 10 minutes before the

current time up to the current time. LAST WEEK AT 9:30 represents

9:30 am for the same day of the week as current date in the previous

week.

day_of_week:

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 15 © 2019–2024 meshIQ

Table 7. Date and Time Expressions

Represents the period of time starting at midnight of the day_of_week

for previous week, up to 11:59:59:999999 pm of that day. If

time_of_day is specified, then it represents that specific time of this

day. For example: LAST MONDAY represents all day for Monday of

last week; LAST MONDAY AT 12:30PM represents 12:30 pm of

Monday of last week.

NEXT {date_unit |

day_of_week} [AT

time_of_day]

Behavior depends on whether date_unit or day_of_week is

specified.

date_unit:

Represents a period of time starting at the next date_unit from the

current time that is date_units long. If time_of_day is specified,

then it represents that specific time of the day of the base date that

date_unit resolves to. For example: NEXT 10 MINUTES represents

the period of time starting at the current time up to 10 minutes after

the current time. NEXT WEEK AT 9:30 represents 9:30 am for the

same day of the week as current date in the following week.

day_of_week:

Represents the period of time starting at midnight of the day_of_week

for next week, up to 11:59:59:999999 pm of that day. If time_of_day

is specified, then it represents that specific time of this day. For

example: NEXT MONDAY represents all day for Monday of next week;

NEXT MONDAY AT 12:30PM represents 12:30 pm of Monday of next

week.

LAST number

date_unit

Represents a period of time that is the number of date_units from

the current date/time up to the current time. If the value of number is

1, then it is interpreted as LAST date_unit, as described above. For

example: LAST 2 WEEKS represents period of time starting at

beginning of last week up to current date/time.

NEXT number

date_unit

Represents a period of time that is the number of date_units from

the current date/time up to the current time. If the value of number is

1, then it is interpreted as NEXT date_unit, as described above. For

example: NEXT 2 WEEKS represents period of time starting at

beginning of next week up to end of following week after next week.

LATEST [number]

{date_unit |

day_of_week [AT

time_of_day]}

Represents the period of time starting at the number of date_units

or day_of_weeks from the time of the latest item in the database up

to the time of the latest item. For example: If the time of the latest

item is yesterday at 10:00, then LATEST 10 MINUTES represents the

period of time starting at 10 minutes before 10:00 yesterday (i.e., 9:50

yesterday) up to 10:00 yesterday. If number is omitted, it is assumed

to be 1.

EARLIEST [number]

{date_unit |

Represents the period of time starting at the time of the earliest item

in the database up to the number of date_units or day_of_weeks

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 16 © 2019–2024 meshIQ

Table 7. Date and Time Expressions

day_of_week [AT

time_of_day]}
from the time of the earliest item. If the time of the earliest item is

yesterday at 10:00, then EARLIEST 10 MINUTES represents the

period of time starting at 10:00 yesterday up to 10 minutes after 10:00

yesterday (i.e., 10:10 yesterday). If number is omitted, it is assumed to

be 1.

THIS {date_unit |

day_of_week} [AT

time_of_day]

Behavior depends on whether date_unit or day_of_week is

specified.

date_unit:

Represents a period of time that’s date_units long, based on the

current time. For example:

THIS YEAR Represents the period of time starting at

midnight of the first day of the year

THIS WEEK Represents the period of time starting at

midnight for the start of the week (midnight

Sunday)

THIS MINUTE Represents the period of time starting at the

beginning of the current time rounded down

to the start of the minute (so that seconds and

fractional seconds are 0), e.g., if current time is

10:22:33.456789, the period of time starts at

10:22:00.000000.

MINUTE is the smallest date unit supported with this. If a date unit

smaller than MINUTE is specified, it will apply MINUTE. If

time_of_day is specified, then it simply represents that specific time

of the day of the base date that date_unit resolves to.

day_of_week:

Represents the time period covering the complete day_of_week of

the current week. If time_of_day is specified, then it simply

represents that specific time of the day_of_week of the current week.

For example:

THIS MONDAY Represents the period of time starting at

midnight of Monday of this week up to, but

not including midnight of Tuesday of this

week.

TODAY [AT

time_of_day]

or

time_of_day TODAY

Represents the period of time starting at midnight today

(00:00:00.000000) up to the current time. This is the same as THIS

DAY. If time_of_day is specified, then it simply represents that

specific time for current date.

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 17 © 2019–2024 meshIQ

Examples

Get Activities For Last Week Where Exception Exists

Get Events For 3 Days Ago

Get Activities For Yesterday At 9 am

3.2.3 Operators

Arithmetic Operators

Comparison Operators

Table 7. Date and Time Expressions

YESTERDAY [AT

time_of_day]

or

time_of_day

YESTERDAY

Represents the period of time starting at midnight (00:00:00.000000)

of the date before the current date up to but not including midnight of

the current date (23:59:59.999999 of date before current date). If

time_of_day is specified, then it simply represents that specific time

for yesterday.

TOMORROW [AT

time_of_day]

or

time_of_day

TOMORROW

Represents the period of time starting at midnight (00:00:00.000000)

of the date after the current date up to but not including midnight of

the second date after the current date (23:59:59.999999 of second

date after current date). If time_of_day is specified, then it simply

represents that specific time for tomorrow.

Table 8. Arithmetic Operators

+ Addition

- Subtraction

* Multiply

/ Divide

% Modulo

Table 9. Comparison Operators

= | Is | Equals expr
Returns true/false, depending on whether the field

being tested is equal to expr.

!= | <> | Is Not expr
Returns true/false, depending on whether the field

being tested is not equal to expr.

~ expr [+/- epsilon]

Returns true/false, depending on whether the field

being tested is “about equal” to expr. “About equal”

is defined as the values being within a specified

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 18 © 2019–2024 meshIQ

Table 9. Comparison Operators

epsilon of each other. If epsilon is omitted, then

the default used is as follows:

• For DECIMAL fields, a value of 0.00000001 is

used

• For INTEGER fields, a value of 0 is used

• For TIMESTAMP and TIMEINTERVAL fields, the

values are compared based on the resolution

of the specified timestamp or time interval

expression. For example, if expr is specified

as “2018-09-15 11:30”, this implies that the

resolution of the timestamp is minutes, so

any timestamp in the range [“2018-09-15

11:30:00:000000” to “2018-09-15

11:30:59.999999”] will be considered to be

“about equal”

> expr
Returns true/false, depending on whether the field

being tested is greater than expr.

>= expr
Returns true/false, depending on whether the field

being tested is greater than or equal to expr.

< expr
Returns true/false, depending on whether the field

being tested is less than expr.

<= expr
Returns true/false, depending on whether the field

being tested is less than or equal to expr.

[Is] [Not] Between expr1 And

expr2

Returns true/false, depending on whether the field

being tested is or is not between expr1 and expr2,

inclusive.

[Does] [Not] Exist[s]
Returns true/false, depending on whether the field

being tested has or does not have a value.

[Is] [Not] In list
Returns true/false, depending on whether the field

being tested is or is not equal to and value in list.

Has [All | Any | None] [Of] list

Returns true/false, depending on whether each value

in field being tested is or is not equal to all of, any of,

or none of the values in list (default is All). Each

value in list is compared to each value in field

(which is generally a list).

[Does] [Not] Contain[s] string
Returns true/false, depending on whether the string

field being tested contains or doesn’t contain string.

Contains [All | Any | None] [Of]

string_list
Returns true/false, depending on whether each string

in string field being tested contains all of, any of, or

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 19 © 2019–2024 meshIQ

Logical Operators

Table 9. Comparison Operators

none of the strings in string_list (default is All).

Each string in string_list is compared to each

string in string field (which is generally a list of

strings).

[Does] [Not] Start[s] With

string

Returns true/false, depending on whether the string

field being tested starts or doesn’t start with string.

Starts With [All | Any | None]

[Of] string_list

Returns true/false, depending on whether each string

in string field being tested starts with all of, any of, or

none of the strings in string_list (default is All).

Each string in string_list is compared to each

string in string field (which is generally a list of

strings).

[Does] [Not] End[s] With string
Returns true/false, depending on whether the string

field being tested ends or doesn’t end with string.

Ends With [All | Any | None]

[Of] string_list

Returns true/false, depending on whether each string

in string field being tested ends with all of, any of, or

none of the strings in string_list (default is All).

Each string in string_list is compared to each

string in string field (which is generally a list of

strings).

[Does] [Not] Match[es] regex
Returns true/false, depending on whether the string

field being tested matches regular expression regex.

Matches [All | Any | None] [Of]

regex_list

Returns true/false, depending on whether each string

in string field being tested matches all of, any of, or

none of the regular expressions in regex_list

(default is All). Each regular expression in

regex_list is matched with each string in string

field (which is generally a list of strings).

Table 10. Logical Operators

cond1 And cond2 Logical and, returning true if and only if cond1 and

cond2 are true.

Not cond Logical not, negating the value of cond, returning true

if cond is false, and returning false if cond is true.

cond1 Or cond2 Logical or, returning true if either of cond1 or cond2

is true.

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 20 © 2019–2024 meshIQ

Examples

Get Activities Where ApplName Starts With 'Router’

Get Events Where EventName = 'SentMsg' And Severity > 'INFO'

Get Activities Where ReasonCode Has Any of (-1, -2, -3)

Limiting Operators

The limiting operators allow the query results to be limited to the specified number of

items (default is 1), based on the specified qualitative descriptor. How this descriptor is

applied depends on the type of item being queried and the type of field that it is being

applied to. The default field used is dependent on the descriptor but can be specified

directly using the Based On clause (see below).

Table 11. Limiting Operators

Best [number]

Selects the first number of rows from result that are considered

the best, dependent on item type, as follows:

Activity : ActivityStatus, then Severity (for activities with

equal status)

Event : Severity, Compcode

Job : CompCode

Log : Severity

For others, behaves like First.

Bottom [number] Synonym for Worst

Earliest [number]

Selects the first number of rows with the smallest value for the

default timestamp field, as follows:

Activity, Event : StartTime

Snapshot : SnapshotTime

Job, Log: ReportTime

For other item types, uses UpdateTime, if it supports it. For

items with no timestamp fields, behaves like First.

First [number]
Selects the first number of rows from result, independent of

which field is specified (Based On is ignored).

Largest [number]

Selects the first number of rows from result that are considered

the largest, dependent on item type, as follows:

Activity : the greatest number of events (largest

EventCount)

Event, Log, Job : largest message length (largest

MsgLength)

For others, behaves like First.

Last [number]
Selects the last number of rows from result, independent of

which field is specified (Based On is ignored).

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 21 © 2019–2024 meshIQ

Based On

The Based On clause can be used to override the default fields used for Limiting Operators.

In general, how the limiting is applied is based on the data type of the specified fields as

well as the qualitative descriptor, as follows:

• For STRING, INTEGER, DECIMAL, BINARY, can use:

o Largest, Longest, Shortest, Smallest

• For TIMESTAMP, can use:

o Earliest, Largest, Latest, Longest, Shortest, Smallest

Table 11. Limiting Operators

Latest [number]

Selects the first number of rows with the largest value for the

default timestamp field, as follows:

Activity, Event: EndTime

Snapshot: SnapshotTime

Log: ReportTime

For other item types, uses UpdateTime, if it supports it. For

items with no timestamp fields, behaves like First.

Longest [number]

Selects the first number of rows from result with the longest

ElapsedTime value. For items that do not support ElapsedTime,

behaves like First.

Shortest [number]

Selects the first number of rows from result with the smallest

ElapsedTime value. For items that do not support ElapsedTime,

behaves like First.

Smallest [number]

Selects the first number of rows from result that are considered

the smallest, dependent on item type, as follows:

Activity : fewest number of events (smallest EventCount)

Event, Log, Job : smallest message length (smallest

MsgLength)

For others, behaves like First.

Top [number] Synonym for Best.

Worst [number]

Selects the first number of rows from result that are considered

the worst, dependent on item type, as follows:

Activity : ActivityStatus, then Severity (for activities with

equal status)

Event : Severity, CompCode

Job : CompCode

Log : Severity

For others, behaves like First.

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 22 © 2019–2024 meshIQ

• For TIMEINTERVAL, can use:

o Best, Bottom, Largest, Longest, Shortest, Smallest, Top, Worst

• For ENUM, can use:

o Best, Bottom, Largest, Longest, Shortest, Smallest, Top, Worst

For other combinations of data type and qualitative descriptor, behaves like First.

Examples

Get Longest 10 Activities

Get Worst Events Based on Severity

Get Worst 20 Activities Based On CompCode, Severity Where ReasonCode > 0

See Result Limiting for additional information related to result limiting.

Selection Operators

Result Grouping Modifiers

• Bucketed By – By default, Group By clause creates a row for each unique set of

values for columns being grouped on. Bucketing allows multiple Group By

function’s Result rows to be combined into a single result row. Bucketing can only

be applied to INTEGER, DECIMAL, TIMESTAMP, and TIMEINTERVAL data types. Rows

can be bucketed by:

o Date Unit (Hours, Days, …), where each bucket is a fixed length. In this case,

the number of buckets created depends on the range of values. You can also

specify a unit count.

o Size, where each bucket is of a fixed size/length. In this case, the number of

buckets created depends on the range of values.

o Count, where there are fixed number of buckets. In this case, the size/length

of each bucket depends on range of values.

Note that Time-based buckets cannot have less than Minute resolution (cannot

bucket by Seconds or portions of a second) when applied to TIMESTAMP fields.

If the bucketing type is not specified, then bucket size and count will be determined

by data type and range of data, as follows:

o For Time-based bucketing on TIMESTAMP fields, buckets are created based on

date units, as follows:

Table 12. Selection Operators

Case When cond1 Then expr1

 [When cond2 Then expr2 …]

 Else expr End

Returns the value of the expression for the first

condition that evaluates to TRUE. If no conditions

evaluate to TRUE, the value of Else expression is

returned.

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 23 © 2019–2024 meshIQ

▪ If number of days is > 120, then bucketing is done by MONTH

▪ If number of days is > 0 and <= 120, then bucketing is by DAY

▪ Otherwise, bucketing is by HOUR

o For Time-based bucketing on fields, buckets are created by using shortest

date unit for which the range of values is less than the allowable maximum

(see below).

o For other data types, behaves as bucketing by count, creating a fixed number

of buckets (32) whose size is dependent on range of values.

In all cases, the maximum number of buckets is 2048. For Time-based bucketing, if

no unit count is specified, the count will be computed to make the bucket count less

than the allowable maximum.

Examples

Get Number of Events for Today Group By StartTime Bucketed By Hour

Get Number of Events Group By StartTime Bucketed By 8 Hours

3.3 Functions

There are generally 4 classes of functions:

• Scalar functions – functions that operate on a single row in a table and return a

single value.

• Spanning functions – functions that operate on multiple table rows and return a

single value.

o These functions make no assumptions about the order of the rows (unless

explicitly defined in function). Therefore, queries using them should include

a SORT BY clause to put the rows in the proper sequence. As a result, there is

a limitation that the final results cannot be sorted based on the results of

Spanning functions.

o These functions return null when accessing a row that does not exist (e.g.,

accessing the previous row for the first row, etc.).

o These functions cannot be used when grouping results.

• Aggregate functions – functions that operate on a group of rows and return a single

value. The rows in the group are determined by the Group By expression.

• Analytic functions – functions that operate either independently (require no prior

query or input result) or are dependent on a group of rows (the input result). In

both cases, they return one or more rows. Some functions exist as both Aggregate

functions and Analytic functions.

In general, all functions return NULL on null input, except as described below.

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 24 © 2019–2024 meshIQ

3.3.1 Built-in Scalar Functions

General Functions

Numeric Functions

Table 13. General Functions

Cast(expr,type)

Converts expr to the specified type, where type is one of the

following:

BINARY

BOOLEAN

DECIMAL

INTEGER

STRING

TIMESTAMP

TIMEINTERVAL

If expr cannot be converted to the specified type, then NULL is

returned.

Coalesce(expr, ...)
Returns the first non-NULL argument, or NULL if all arguments

are NULL.

Convert(expr,type) Synonym for Cast.

FindIn(item,list)
Returns the 0-based index of item in list. If item is not

found, returns -1.

UUID() Returns a newly generated UUID.

ValueAt(pos,list)
Returns the item in 0-based position pos in list. Returns null if

pos is negative or >= list size.

Table 14. Numeric Functions

Abs(x) Returns the absolute value of x.

AvgOf(x1, …) Computes the average of all the arguments.

Ceil(x) Return the smallest integer value not less than x.

Ceiling(x) Synonym for Ceil.

Exp(x) Returns Euler's number e raised to the power x (ex).

Floor(x) Returns the largest integer value not greater than x.

Largest(x1, …) Synonym for MaxOf.

Ln(x) Returns the natural logarithm of x.

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 25 © 2019–2024 meshIQ

String Functions

Table 14. Numeric Functions

Log(x) Synonym for Ln.

Log10(x) Returns the base-10 logarithm of x.

MaxOf(x1, …) Returns the maximum (largest) value of all the arguments.

MeanOf(x1, …) Synonym for AvgOf.

MedianOf(x1, …)
Returns the “middle” value, based on sorted order of all

arguments.

MinOf(x1, …) Returns the minimum (smallest) value of all the arguments.

Pow(x,y) Synonym for Power.

Power(x,y) Returns x raised to the power y (xy).

Round(x) Returns the closest integer to x.

Smallest(x1, …) Synonym for MinOf

Sqrt(x) Returns the square root of x.

SumOf(x1, …) Computes the total of all the arguments.

TotalOf(x1, …) Synonym for SumOf

Table 15. String Functions

Concat(expr,expr,...)
Returns the string resulting from concatenating the string

representation of each expr in order. NULL values are skipped.

ConcatWS(sep,expr,expr,.

..)

Returns the string resulting from concatenating the string

representation of each expr in order, with each value being

separated by sep, which must be a STRING. NULL values are

skipped.

Lcase(expr) Synonym for Lower.

Left(expr,len)
Returns the left-most len characters from string representation

of expr.

Len(expr) Synonym for Length.

Length(expr)

Returns the length of the specified expr. If expr is a list,

returns the number of items in the list. Otherwise, returns the

number of characters in the string representation of expr.

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 26 © 2019–2024 meshIQ

Table 15. String Functions

Locate(expr,substr,

 [pos,[occ]])
Synonym for Position.

LocateRE(expr,regex,

 [pos,[occ]])
Synonym for PositionRE.

Lower(expr) Returns the lower-case string representation of expr.

Position(expr,substr

 [,pos[,occ]])

Returns the 0-based index of the occ occurrence (default is 1) of

substr in string representation of expr, starting at 0-based

position pos (defaults to 0). Returns -1 if number of required

occurrences of substr are not found.

PositionRE(expr,regex

 [,pos[,occ]])

Returns the 0-based index of the occ occurrence (default is 1) of

substring matching regex in string representation of expr,

starting at 0-based position pos (defaults to 0). Returns -1 if

number of required occurrences of substr are not found.

Replace(expr,substr

 [,repl[,pos]])

Replaces each occurrence of substr in string representation of

expr, starting at 0-based position pos (defaults to 0), with repl.

If repl is not specified, then each occurrence of substr is

removed.

Right(expr,len)
Returns the right-most len characters from string

representation of expr.

StrAt(expr,pos[,sep])

Returns the string at 0-based position pos from result of

splitting string representation of expr using sep as element

separator. If sep is not specified, then string representation of

expr is treated as a simple character array and returns the

character at pos as a string.

SubStr(expr,start[,end])

Returns the substring from string representation of expr,

starting at 0-based position start inclusive, ending at position

end, exclusive. If end is not specified, then defaults to end of

expr.

SubStrRE(expr,regex

 [,pos[,occ]])

Returns the occ-occurrence, or regex group (default is 1) of the

substring from string representation of expr, starting at 0-

based position pos (defaults to 0). Returns NULL if number of

required occurrences of substring matching regex are not

found.

Tokenize(expr[,sep])

Returns the list of strings formed by splitting the string

representation of expr with sep being the separator between

tokens (default is ",").

Ucase(expr) Synonym for Upper.

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 27 © 2019–2024 meshIQ

Date and Time Functions

Table 16. Date and Time Functions

CurrentTime()

Synonym for Now.

Example: Get Event Fields Name,
CurrentTime()

CurTime()

Synonym for Now.

Example: Get Event Fields Name,
CurTime()

DateAdd(tstamp,intvl)

Adds time interval intvl to timestamp tstamp,

returning the resulting timestamp. The jKQL query

should have a field with a TIMESTAMP data type

value, i.e., “StartTime”, “EndTime”, “UpdateTime”

(depends on user’s data).

DateAdjust(tstamp,cal[,dir])

Returns the timestamp resulting from adjusting

the specified tstamp, based on the specified

calendar component cal and the adjustment

direction dir.

cal is one of: YEAR, MONTH, DAY, HOUR, MINUTE,

SECOND, MILLISECOND, MICROSECOND, WEEK

dir is one of: START, END (if omitted, defaults to

START)

Example: DateAdjust(StartTime, 'DAY',

'START') returns the start of the day for

timestamp in StartTime field

Example: Get Event Fields EventID,
starttime, Endtime, Elapsedtime,

DateAdjust(StartTime,

‘YEAR’,’START’)Show as linechart

DateDiff(tstamp1,tstamp2)

Returns the difference between the 2 timestamps

(tstamp1 - tstamp2) as a time interval.

Example: Get Activity Fields ActivityID,
Starttime, Endtime, Elapsedtime,

DateDiff(Starttime,Endtime) where

DateDiff(StartTime,EndTime) < 10Sec

show as colchart

Example: Get Events Fields Name,
DateDiff(Now(), UpdateTime)

– shows event time length.

Table 15. String Functions

Upper(expr) Returns the upper-case string representation of expr.

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 28 © 2019–2024 meshIQ

Table 16. Date and Time Functions

DateExtract(tstamp,cal)

Returns the value of the specified calendar

component cal from timestamp tstamp.

cal is one of: YEAR, MONTH, DAY, HOUR, MINUTE,

SECOND, MILLISECOND, MICROSECOND, WEEK

Example: Get Event Fields EventID,
StartTime, EndTime, ElapsedTime,

DateExtract(StartTime, ‘YEAR’) show as

areachart

Example: Get Events fields
DateExtract(StartTime, 'Day')

– gets value(s) from the specified value.

DayOfWeek(tstamp)

Returns the day of the week that timestamp

tstamp falls on.

Example: Get Event Fields EventID,
StartTime, EndTime, ElapsedTime,

DayOfWeek(StartTime) show as barchart

Example: Get Events Fields EventName,
StartTime, DayOfWeek(StartTime)

– shows the day of week when the event

occurred.

Now()

Returns current time as a timestamp.

Example: Get Activity Fields ActivityID,
StartTime, EndTime, ElapsedTime, Now()

show as areachart

3.3.2 Built-in Spanning Functions

Table 17. Built-in Spanning Functions

Change(expr) Synonym for Delta.

Delta(expr)

Computes the “delta”, or change, between the value

for expr in a row and the value for the same expr

in the previous row.

Next(expr) Retrieves the value for expr from the next row.

PercentChg(expr)

Computes the percent change between the value

for expr in a row and the value for the same expr

in the previous row as: (this - prior)/prior.

PercentChange(expr) Synonym for PercentChg.

Prior(expr) Synonym for Previous.

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 29 © 2019–2024 meshIQ

Examples

A common use case is to compute the delay between events in a particular Activity. This

can be done by:

Get Events Fields EventName, StartTime, EndTime, StartTime –

Previous(EndTime) As 'EventDelay' Where ActivityId = 'aaa-bbb-ccc-ddd'

Sort by StartTime

Table 17. Built-in Spanning Functions

Prev(expr) Synonym for Previous.

Previous(expr)
Retrieves the value for expr from the previous

(prior) row.

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 30 © 2019–2024 meshIQ

3.3.3 Built-in Aggregate Functions

Table 18. Built-in Aggregate Functions

Apdex([DISTINCT] expr,

target[,tolerable])

Returns the Apdex (Application Performance Index),

which is a measure of satisfaction level, in the range

0.0 – 1.0, of the set of values for expr based on target

value target and tolerable value tolerable, where

0.0 means totally unacceptable and 1.0 means totally

satisfied.

The target value is the value such that all values

below it are satisfactory, or acceptable, values. The

tolerable value is the value at or below which the

values are tolerable. This value defaults to 4 times

the target value.

The Apdex formula is defined as follows:

Where:

 is the number of expr values <

target

 is the number of expr values >=

target and <= tolerable

 is the total number of expr values

(including those that are > tolerable).

If DISTINCT is specified, returns the Apdex value

from set of distinct values.

Example: Get activities fields
Apdex(ElapsedTime,3sec,4.5sec)group by

ActivityName order by ActivityName show

as scorecard

Average([DISTINCT] expr) Synonym for Avg.

Avg([DISTINCT] expr)

Returns the average of all expr values for group. If

DISTINCT is specified, returns the average of distinct

set of values.

Example: Get Events Fields Avg(StartTime)

– this query counts the average start time of

events.

Example: Get activity fields
avg(elapsedtime) group by phoneCarrier,

CITY_NAME show as scorecard

Close([DISTINCT] expr

 [,basedon])

Returns the “closing” or “ending” value of expr, which

is the value of expr having the maximum value of

basedon expression. If basedon is not specified,

TotalCount

ountToleratedCountSatisfiedC
Apdex

)(5.0+
=

ountSatisfiedC

ountToleratedC

TotalCount

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 31 © 2019–2024 meshIQ

Table 18. Built-in Aggregate Functions

then the default date field for item type in statement

is used. DISTINCT is accepted but is ignored.

Example: Get number of Event fields
Close(ActivityID,StartTime) group by

Severity show as colchart

Count([DISTINCT] expr)

Returns the number of expr values for group. If

DISTINCT is specified, returns the number of distinct

values.

Example: Get count of activity fields
max(elapsedtime), avg(elapsedtime) group

by activityname, resourcename, severity

Example: Get count of events where
exception exists group by severity,

eventname, servername, exception order by

severity show as scorecard

List([DISTINCT] expr)

Returns the comma-separated list of all expr values.

If DISTINCT is specified, returns the list of distinct

values.

Example: Get Events Fields List(DISTINCT
EventName)

Example: Get events fields list(EventId)

Max([DISTINCT] expr)

Returns the maximum of expr values for group.

DISTINCT is accepted but is ignored.

Example: Get Events Fields Max(StartTime)

– this query finds the maximum value of the

start time.

Example: Get count of activities fields
max(elapsedtime)

Maximum([DISTINCT] expr)

Synonym for Max.

Example: Get count of activities fields
Maximum(elapsedtime)

Mean([DISTINCT] expr)

Synonym for Avg.

Example: Get activities fields StartTime,
Mean(Elapsed Time), Mean(ElapsedTime)

from Complete_Delivery_Orders for latest

2 month group by StartTime bucketed by

minute show as linechart

Median([DISTINCT] expr)

Returns the “middle” value, based on sorted order of

all values for expr. If DISTINCT is specified, returns

the middle value from set of sorted distinct values.

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 32 © 2019–2024 meshIQ

Table 18. Built-in Aggregate Functions

Example: Get Events Fields
Median(StartTime)

Example: Get activities fields StartTime,
Median (ElapsedTime), Median(ElapsedTime)

from Complete_Delivery_Orders for latest

2 month group by StartTime bucketed by

minute show as linechart

Min([DISTINCT] expr)

Returns the minimum of expr values for group.

DISTINCT is accepted but is ignored.

Example: Get Events Fields Min(StartTime)

– finds the minimum value of start time.

Example: Get activity fields
min(elapsedtime) group by phoneCarrier,

CITY_NAME show as scorecard

Minimum([DISTINCT] expr) Synonym for Min.

Open([DISTINCT] expr

 [,basedon])

Returns the “opening” or “starting” value of expr,

which is the value of expr having the minimum value

of basedon expression. If basedon is not specified,

then the default date field for item type in statement

is used. DISTINCT is accepted but is ignored.

Example: Get Events Fields Open(StartTime)

Example: Get number of Event fields
Open(ActivityID,StartTime) group by

Severity show as colchart

Percentile([DISTINCT] expr,

 percentile)

Returns the specified percentile value for expr .

This is the value below which the specified

percentage of all values fall.

Example: Get activity fields
percentile(elapsedtime, 90) group by

phoneCarrier, CITY_NAME show as scorecard

Gets the ElapsedTime value for each group that is at

the 90th percentile. This is the ElapsedTime value that

90% of the other ElapsedTime values in the group fall

below.

StdDev([DISTINCT] expr)

Synonym for StdDevPop.

Example: Get count of activities fields
StdDev(elapsedtime), StdDev(elapsedtime)

group by severity, activityname,

resourcename show as piechart

StdDevPop([DISTINCT] expr) Returns the population standard deviation of all

values for expr. If DISTINCT is specified, returns

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 33 © 2019–2024 meshIQ

Table 18. Built-in Aggregate Functions

population standard deviation of distinct set of

values.

Example: Get snapshots fields
StdDevPop(OrderAmount) group by

DataCenter

– shows the standard deviation of the OrderAmount’s

value. Supported types are INTEGER, DECIMAL,

TIMEINTERVAL, ENUM. Requires using the Group By

expression.

StdDevSample([DISTINCT] expr)

Returns the sample standard deviation of all values

for expr. If DISTINCT is specified, returns sample

standard deviation of distinct set of values.

Example: Get Events Fields
StdDevSample(ElapsedTime)

– shows the standard deviation of all data

records. Similar to StdDev() but does not require

the Group By expression.

Example: Get count of activities fields
StdDevSample(elapsedtime),

StdDevSample(elapsedtime) group by

severity, activityname, resourcename show

as scorecard

Sum([DISTINCT] expr)

Returns the sum of all expr values for group. If

DISTINCT is specified, returns the sum of distinct set

of values.

Example: Get Events Fields
Sum(ElapsedTime)

– shows the sum of a specified value from all the

data records. Supported data types are

INTEGER, DECIMAL, TIMEINTERVAL.

Example: Get activity ‘TRACKING_ACTIVITY’
field sum(amount), sum(numberOfItems)

where amount > 0 group by ApplName show

as barchart

Var([DISTINCT] expr)

Synonym for VariancePop.

Example: Get count of activities fields
Var(elapsedtime), Var(elapsedtime) group

by severity, activityname, resourcename

show as stackchart

Variance([DISTINCT] expr) Synonym for VariancePop.

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 34 © 2019–2024 meshIQ

3.3.4 Built-in Analytic Functions

Table 18. Built-in Aggregate Functions

VariancePop([DISTINCT] expr)

Returns the population variance of all values for

expr. If DISTINCT is specified, returns population

variance of distinct set of values.

Example: Get Snapshots Fields
Variance(OrderAmount) Group By DataCenter

– this query counts the dispersion of the

OrderAmount values.

VarianceSample([DISTINCT] expr)

Returns the sample variance of all values for expr. If

DISTINCT is specified, returns sample variance of

distinct set of values.

Example: Get Snapshots Fields
Variance(OrderAmount)

– this query counts the dispersion of

OrderAmount value of all the data records.

Example: Get count of activities fields
VarianceSample(elapsedtime),

VarianceSample(elapsedtime) group by

severity, activityname, resourceName

VarPop([DISTINCT] expr) Synonym for VariancePop.

VarSample([DISTINCT] expr) Synonym for VarianceSample.

Table 19. Built-in Analytic Functions

Average(expr) Synonym for Avg.

Avg(expr) Returns the average of all expr values.

BBands(expr [,window[,stdevs

 [,useEMA]]])

Returns the Bollinger Bands based on value of expr.

Bollinger Bands are used to measure the "highness"

or "lowness" of a value relative to previous values.

They consist of:

• a window -period (default is 20) moving

average (MA)

• an upper band at stdevs (default is 2) times

the N-period standard deviation above the

moving average (MA + Kσ)

• a lower band at stdevs times an N-period

standard deviation below the moving average

(MA − Kσ)

The moving average is computed as an

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 35 © 2019–2024 meshIQ

Table 19. Built-in Analytic Functions

Exponential Moving Average (EMA) if useEMA

is true (the default), or as a Simple Moving

Average (SMA) if useEMA is false.

BollingerBands(expr

 [,window[,stdevs[,useEMA]]])
Synonym for BBands.

EMA(expr [,window])

Returns the Exponential Moving Average (EMA) based

on value of expr.

An EMA is a window -period (default is 20) type of

moving average that is similar to a simple moving

average, except that more weight is given to the

latest data. The general formula is:

curEMA = ((curVal - priorEMA) * weight) +

priorEMA

Where:

weight = 2 / (window + 1)

ForEach(expr, ...)

For each row in the input result, evaluate each expr

argument. Returns a result consisting of a column for

each expr argument and a row for each row of the

input result. The value of each cell in the returned

result is the value of evaluating the expression for the

column against the corresponding row in the input

result.

Max(expr) Returns the maximum of expr values.

Maximum(expr) Synonym for Max.

Mean(expr) Synonym for Avg.

Median(expr)
Returns the “middle” value, based on sorted order of

all values for expr.

Min(expr) Returns the minimum of expr values for group.

Minimum(expr) Synonym for Min.

Percentile(expr, percentile)

Returns the specified percentile value for expr.

This is the value below which the specified

percentage of all values fall.

SMA(expr [,window])

Returns the Simple Moving Average (SMA) based on

value of expr.

An SMA is a window -period (default is 20) type of

moving average that gives equal weight to each data

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 36 © 2019–2024 meshIQ

Examples

To compute the BollingerBands for events based on the average daily elapsed time based

on a 10-day exponential moving average for this month:

Get Events Compute BBands(Avg(ElapsedTime), 10) For This Month Group By

StartTime Bucketed by Day

To apply custom calculations to the result of a grouping aggregation (in this case calculate

the average order amount and taxes for each group in the base query, including the

grouping columns in the final result):

Get Snapshot Fields Sum(OrderAmount) as OrderTotal, Sum(Taxes) as

TaxesTotal, Sum(ProductCount) as ProdCount Group By SnapshotName,

Category

 | Compute ForEach(SnapshotName, Category, OrderTotal/ProdCount as

AvgOrder, TaxesTotal/ProdCount as AvgTaxes)

3.3.4.1 Machine Learning Functions

If you use the Machine Learning feature, you can configure your system to analyze and gain

insights from your data through Supervised (model-based) or Unsupervised (non-model-

based) Learning. Refer to the Machine Learning Guide in the Resource Center for a list of

analytic functions and descriptions.

Table 19. Built-in Analytic Functions

item. It is essentially the mean of the data items in

the window.

StdDev(expr) Synonym for StdDevPop.

StdDevPop(expr)
Returns the population standard deviation of all

values for expr.

Sum(expr) Returns the sum of all expr values for group.

Var(expr) Synonym for VariancePop.

Variance(expr) Synonym for VariancePop.

VariancePop(expr)
Returns the population variance of all values for

expr.

VarianceSample(expr) Returns the sample variance of all values for expr.

VarPop(expr) Synonym for VariancePop.

VarSample(expr) Synonym for VarianceSample.

https://customers.meshiq.com/hc/en-us

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 37 © 2019–2024 meshIQ

3.4 Statement Syntax

3.4.1 Common Elements
In syntax diagrams below, the following elements are interpreted as follows:

item_type:

 SOURCE[S]

 | RESOURCE[S]

 | EVENT[S]

 | ACTIVITY | ACTIVITIES

 | SET[S]

 | SNAPSHOT[S]

 | DICTIONARY | DICTIONARIES

 | RELATIVE[S]

 | PROVIDERTYPE[S]

 | ACTION[S]

 | IPLOCATION[S]

 | ENUMERATION[S]

 | ITEM[S]

 | FIELD[S]

 | KEYWORD[S]

 | FUNCTION[S]

 | PARAMETER[S]

 | INPUTDATARULE[S]

 | VIEW[S]

 | VIEWTEMPLATE[S]

 | MLMODEL[S]

 | JOB[S]

 | LOG[S]

 | DATASET[S]

 | SCRIPT[S]

date_time_string:

 date_string [time_string] [timezone]

item_name:

 label

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 38 © 2019–2024 meshIQ

 | string

func_name:

 label

field_name:

 label

key_name:

 string

set_name:

 label

 | string

alias:

 label

 | string

show_type:

 label

 | string

show_param:

 label

 | string

row_start:

 integer

row_count:

 integer

number:

 integer [date_unit]

 | decimal_number

value:

 string

 | number

 | time_interval_str

 | TRUE

 | FALSE

 | NULL

value_list:

 (value [, value ...])

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 39 © 2019–2024 meshIQ

func_expr:

 func_name ([jkql_expr [, jkql_expr ...]])

field_expr:

 field_name [(key_name [, key_name ...])]

num_op: * | / | % | + / -

3.4.1.1 Filters

Filters control what items are returned for queries and what items are acted upon for

updates.

filter:

 WHERE bool_expr

 | FOR date_expr [TO date_expr]

 | {REPORTED | RECEIVED | CREATED | UPDATED | EXPIRING

 | {STARTED | STARTING} | {ENDED | ENDING}}

 {[IN | WITHIN] date_expr [TO date_expr]

 | {SINCE | AFTER | BEFORE} date_expr}

 | {SINCE | AFTER | BEFORE} date_expr

 | [NOT] BETWEEN date_expr AND date_expr

 | [NOT] CONTAINING [ALL | ANY | NONE] [OF] value_list

 | THAT objective_met_expr

bool_expr:

 field_expr [DOES] [NOT] EXIST[S]

 | query_field_ref [IS] [NOT] IN value_list

 | query_field_ref HAS [ALL | ANY | NONE] [OF] value_list

 | query_field_ref [DOES] [NOT] {CONTAINS | STARTS WITH | ENDS

WITH} string

 | query_field_ref {CONTAINS | STARTS WITH | ENDS WITH}

 [ALL | ANY | NONE] [OF] string_list

 | query_field_ref [DOES] [NOT] MATCHES regex

 | query_field_ref MATCHES [ALL | ANY | NONE] [OF] regex_list

 | query_field_ref [IS] [NOT] BETWEEN jkql_expr AND jkql_expr

 | query_field_ref IS [NOT] jkql_expr

 | query_field_ref ~ jkql_expr [+/- {number |

time_interval_str}]

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 40 © 2019–2024 meshIQ

 | query_field_ref rel_op jkql_expr

 | NOT bool_expr

 | bool_expr {AND | OR} bool_expr

 | (bool_expr)

query_field_ref:

 func_expr

 | field_expr

 | {+ | -} query_field_ref

 | query_field_ref num_op query_field_ref

objective_met_expr:

 [HAVE] [NOT] {MET | MEETS} [ALL | ANY | NONE | NO] [OF]

OBJECTIVES

 [FROM set_name [, set_name ...]]

 | [HAVE] [NOT] {MET | MEETS} [ALL | ANY | NONE | NO] [OF]

[OBJECTIVES]

 obj_name [, obj_name ...] [FROM set_name [, set_name

...]]

date_expr:

 number {date_unit | day_of_week} [AGO | FROM NOW] [AT

time_of_day]

 | LAST {date_unit | day_of_week} [AT time_of_day]

 | LAST number date_unit

 | NEXT {date_unit | day_of_week} [AT time_of_day]

 | NEXT number date_unit

 | LATEST [number] date_unit

 | LATEST [number] day_of_week [AT time_of_day]

 | EARLIEST [number] date_unit

 | EARLIEST [number] day_of_week [AT time_of_day]

 | THIS {date_unit | day_of_week} [AT time_of_day]

 | day_of_week [AT time_of_day]

 | TODAY [AT time_of_day]

 | YESTERDAY [AT time_of_day]

 | TOMORROW [AT time_of_day]

 | time_of_day [YESTERDAY | TODAY | TOMORROW]

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 41 © 2019–2024 meshIQ

 | date_time_string

 | number

rel_op:

 = | != | <> | < | <= | > | >= | EQUALS | IS | IS NOT | ISNT |

ISN'T

Filters are applied against the values of the fields referenced in the filters. When

referencing a custom property, the filter applies to the value of the property. For example:

Get Snapshots Where Property('FreeBytes') < 1024

Returns items whose value for custom property “FreeBytes” is less than 1024. But what if

you want to query for items that contain a property named “FreeBytes”, regardless of its

value? You can do that by using a special form of query_field_ref, Property Name, for

example:

Get Snapshots Where Property Name = 'FreeBytes'

You can also query for items that contain a property or properties that match a particular

expression. For example:

Get Snapshots Where Property Name Ends With 'Bytes'

Returns all properties for all snapshots that contain any property that ends with the string

Bytes.

Keep in mind that this is just a filter, and the Property field in the result will contain ALL

properties, not just those that match the filter. This is just a way of getting items that

contain specific properties. To restrict which Properties are returned, you would use the

Fields clause of the Get statement (see Get).

3.4.1.2 Result Paging

Result paging provides a way to limit the number of items to return in a query result.

Format of result paging expression is:

page_expr:

 RANGE row_start , row_count

 | PAGE [cursor ,] row_count]

cursor:

 string

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 42 © 2019–2024 meshIQ

There are 2 mechanisms for retrieving “pages” of results:

• Range – provides a way of extracting a specific “page” of the results, returning the

specified number of rows, starting at the given row.

• Page – provides a way of “paging” through a set of results, starting at the beginning

and sequentially going through the pages.

While both types are similar, there are differences. With Range, each execution of same

query but different range expressions is independent. There is no caching of results. This

is useful when needing to just display one or more small subsets of the entire result,

possibly not sequentially.

With Page, you run the query with just the row count at first to execute the query to

compute the results, with the first page of results being returned, along with a cursor to

use to retrieve the next page. To get the next page, you issue the same query again, but

this time specifying the cursor returned in the previous execution, along with the row count

(presumably the same as previous call). This, in turn, will return a cursor for the next page

of results, etc. When the last page of results is retrieved, no cursor will be returned. With

this, you need to “page” through the results sequentially, in order to generate cursors for

subsequent pages. However, if the returned cursors are saved, they can be reused to jump

back to a previously visited page.

Example

As a simple example, to execute a query and retrieve first page of results, with page size

being 15, you would execute:

Get ... Page 15

This returns the first 15 rows of result set, along with a cursor identifying the page that was

returned, and a cursor identifying the next page or results. If the next cursor is, say,

“AbCdEfG”, you would execute the following to retrieve page 2:

Get ... Page "AbCdEfG", 15

3.4.1.3 Statement Options

Statement options provide a way of controlling the internal execution of a jKQL statement.

The general format of the statement options expression is:

stmt_options:

 WITH option [, option ...]

option:

 label [= value]

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 43 © 2019–2024 meshIQ

The following options are supported:

3.4.2 SignIn
The SignIn statement is used for authenticating the current database session. This is

different than authenticating with the underlying data store. This authenticates the current

Data Services Database session, executing additional statements as the authenticated

meshIQ Track user. The SignIn statement has the following syntax:

Table 20. Statement Options

Tag=string
Generally used with TRACE, it allows a custom tag to be associated

with the logged statement execution entries to facilitate searching

the log.

Timeout=time_interval

Indicates the maximum amount of time for the statement to

complete, after which the statement is aborted. The statement is

not rolled backed, so depending on the type of statement, some

alterations to database or result caches may have occurred. If this

option is not specified, or if the value is set to 0, then no timeout is

defined, and result will be returned when it is available. See Time

Intervals for syntax of time intervals.

Trace [=true |false]

Enables/disables tracing of the statement execution. When tracing

is enabled, entries are created in the Log table for various stages

of statement execution. If a value is not specified, the default

value, true, will be used enabling the tracing.

SafeMode[=true |false]

Indicates that statement is run in “Safe Mode”, preventing the

statement from actually making changes to the database.

Currently only supported with “Invoke Script” statements (see

Options).

SIGNIN [AS] user USING password [TO repository_id] [stmt_options]

user:

 label

 | string

password:

 label

 | string

repository_id:

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 44 © 2019–2024 meshIQ

See Common Elements for sub-clause definitions.

If repository ID is included, the session will be linked to that repository. If it is not included,

or to change to another repository, issue a USE REPOSITORYID statement.

Examples

SignIn 'myuser' Using 'mypwd'

3.4.3 Use
The Use statement is used for setting session parameters. The Use statement has the

following syntax:

See Common Elements for additional sub-clause definitions.

Examples

Use DateFilter 'this year'

Use TimeZone '-05:00'

3.4.4 Get
The Get statement is used for retrieving items from the database, or for querying jKQL

information. The 2 forms of Get statement have the following syntax:

General jKQL query:

GET [limit_expr

 | NUMBER OF [AND PERCENT OF]

 label

 | string

USE parameter param_value [stmt_options]

parameter:

 REPOSITORYID

 | TIMEZONE

 | DATEFILTER

 | MAXRESULTROWS

param_value:

 label

 | string

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 45 © 2019–2024 meshIQ

 | PERCENT OF [AND NUMBER OF]]

 [DEFINITION [OF]]

 [TOP LEVEL]

 item_expr FIELDS {query_expr_list | ALL

 [FROM set_name [, set_name ...]]

 [{VIEWABLE | MODIFIABLE | OWNED} BY

 [USER | TEAM | ORGANIZATION] item_name

 [IN [ORGANIZATION] item_name]]

 [PER field_name]

 [BASED ON field_expr_list]

 [filter [filter ...]]

 [GROUP BY group_by_expr [, group_by_expr ...]

 [TRIM {NONE | ENDS | ALL} | INCLUDE NULLS]

 [HAVING bool_expr]]

 [{SORT | ORDER} BY sort_field_expr [, sort_field_expr ...]

 [page_expr]

 [{SHOW | DISPLAY} AS show_type [(show_param [, show_param

...]]

 [stmt_options]

limit_expr:

 FIRST [row_count]

 | LAST [row_count]

 | TOP [row_count]

 | BOTTOM [row_count]

 | LATEST [row_count]

 | EARLIEST [row_count]

 | BEST [row_count]

 | WORST [row_count]

 | LARGEST [row_count]

 | SMALLEST [row_count]

 | LONGEST [row_count]

 | SHORTEST [row_count]

item_expr:

 [DISTINCT] item_type [item_name] [OF item_type item_name]

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 46 © 2019–2024 meshIQ

query_expr_list:

 jkql_expr [AS alias] [, jkql_expr [AS alias] ...]

field_expr_list:

 field_expr [, field_expr ...]

jkql_expr:

 agg_func_expr

 | func_expr

 | field_expr

 | case_expr

 | value

 | {+ | -} jkql_expr

 | jkql_expr num_op jkql_expr

agg_func_expr:

 func_name [([[DISTINCT] jkql_expr [, jkql_expr ...]])]

case_expr:

 CASE WHEN bool_expr THEN jkql_expr

 [WHEN bool_expr THEN jkql_expr ...]

 ELSE jkql_expr END

group_by_expr:

 field_expr [BUCKETED [BY bucket_expr]]

bucket_expr:

 [number] date_unit

 | SIZE number

 | COUNT number

sort_field_expr:

 {field_expr | integer | NUMBER OF | PERCENT OF} [ASC | DESC]

See Common Elements for additional sub-clause definitions.

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 47 © 2019–2024 meshIQ

Some notes on Get statement syntax:

• If query fields (query_expr_list or ALL) are omitted, then built-in “default” fields are

returned.

• Based-on fields (BASED ON field_expr_list) are only supported if limiting

expression (limit_expr) is specified, and when omitted, built-in “default” based-on

fields are used, which depends on item type and limiting clause (See Result Limiting).

• A limit-grouping field (PER field_name) is only supported if a limiting expression

(limit_expr) is specified (see Result Limiting).

• Aggregate functions cannot be used in filters (except in HAVING).

• When using map field (field_name(key_name)) in filter expression, a specific

property key must be specified, and only one property key can be specified.

• When using Group By, query field expressions that are not included in the Group

By expression must include an aggregate function (see Result Grouping).

• See Inquiries for explanation of using {VIEWABLE | MODIFIABLE | OWNED} BY

Examples

To get default fields for all Activity items:

Get Activities

To get all fields for all Activity items in Set “Purchasing”:

Get Activity Fields All from 'Purchasing’

To get the number of Activity items in Set “Purchasing”:

Get number of Activities from 'Purchasing'

To get the percentage of all Activity items in Set “Purchasing” that started today:

Get percent of Activities from 'Purchasing' for today

To get the 10 longest running activities in Set “Purchasing” that started today:

Get top 10 Activities from 'Purchasing' for today sort by ElapsedTime

desc

To get the number of Activities in Set “Purchasing” for each Activity status for the last week:

Get number of Activities from 'Purchasing' for last week group by

Status

To get the number of Activities in Set “Purchasing” that have the value “Order” (case

insensitive) in any field:

Get number of Activities from 'Purchasing' for last week containing

'Order'

To get the number of Activities in Set “Purchasing” that have the values “Order” or 12345

(case insensitive) in any field:

Get number of Activities from 'Purchasing' for last week containing

'Order',12345

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 48 © 2019–2024 meshIQ

To get the number of Activities in Set “Purchasing” that have the values “Order” and 12345

(case insensitive) in any field (the values do not have to be in the same field):

Get number of Activities from 'Purchasing' for last week containing all

of 'Order',12345

To get the number of Activities in Set “Purchasing” that met all objectives:

Get number of Activities from 'Purchasing' that met all objectives

To get the number of Activities in Set “Purchasing” that did not meet some objectives:

Get number of Activities from 'Purchasing' that have not met all

objectives

To get the number of Activities in Set “Purchasing” that did not meet objectives “A” and “B”:

Get number of Activities from 'Purchasing' that have not met objectives

'A','B'

To get Activities in Set “Purchasing” that did not meet objectives “A” and “B” from set “Web

Purchases”:

Get Activities from 'Purchasing' that have not met objectives 'A','B'

from 'Web Purchases'

3.4.4.1 Get Relatives

This form of Get statement is used for retrieving various relationships between source

components:

GET [limit_expr | NUMBER OF]

 relatives_expr [FIELDS {query_expr_list | ALL}]

 [FROM set_name [, set_name ...]]

 [BASED ON field_expr_list]

 [filter [filter ...]]

 [GROUP BY group_by_expr [, group_by_expr ...]

 [TRIM {NONE | ENDS | ALL}] [HAVING bool_expr]]

 [{SORT | ORDER} BY sort_field_expr [, sort_field_expr ...]

 [page_expr]

 [{SHOW | DISPLAY} AS show_type [(show_param [, show_param

...]]

 [stmt_options]

relatives_expr:

 [TOP LEVEL] RELATIVES OF [limit_expr] ACTIVITY [name | id]

 RELATIVES OF [ACTIVITY | EVENT] id CORRELATED [BY string [,

string ...]]

 | [DIRECT] RELATIVES

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 49 © 2019–2024 meshIQ

 | [DIRECT] RELATIVES ACTING ON [RESOURCE] item_name

 | [DIRECT] RELATIVES ACTED ON BY item_type item_name

 | [DIRECT] RELATIVES {WITHIN | ENCLOSING} item_type item_name

 | [DIRECT] {UPSTREAM | DOWNSTREAM} RELATIVES OF item_type

item_name

See Get and Common Elements for additional sub-clause definitions. See Views and

ViewTemplates for format of Get when retrieving View results.

Relatives data is used to populate the GeoMap and Topology viewlets.

Examples

Get Relatives Show As Geomap

Get Relatives Of Activities Show As Geomap

Get number of Relative group by UpdateTime bucketed, Child show as

piechart

Get relatives from ‘ForEx Conf (MT300) & Conf of CR (MT910/MT950)’ show

as topology

3.4.4.2 Get Info

This form of Get statement is used for retrieving jKQL language information and

connection settings:

GET [limit_expr | NUMBER OF]

 { ENUMERATION[S] FOR field_name

 | ITEM[S] [VARIATION[S]]

 | FIELD[S] [VARIATION[S] | {FOR item_type}]

 | [DISTINCT] CUSTOM {PROPERTY | PROPERTIES | FIELD[S]}

 FOR item_type [item_name]

 | PARAMETER[S] [parameter]

 | KEYWORD[S]

 | STATEMENT[S]

 | [ANALYTIC | AGGREGATE | SCALAR | ALL] FUNCTION[S]

[VARIATION[S]]

 | PROVIDERTYPE[S]

 | ACTIVE task }

 [BASED ON field_expr_list]

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 50 © 2019–2024 meshIQ

 [filter [filter ...]]

 [GROUP BY group_by_expr [, group_by_expr ...]

 [TRIM {NONE | ENDS | ALL}]

 [INCLUDE NULLS]

 [HAVING bool_expr]]

 [{SORT | ORDER} BY sort_field_expr [, sort_field_expr ...]

 [{SHOW | DISPLAY} AS show_type [(show_param [, show_param ...]]

parameter:

 REPOSITORYID

 | TIMEZONE

 | USERNAME

 | MAXRESULTROWS

 | DATEFILTER

 | GLOBALREPOS

 | APINAME

 | APIVERSION

 | APIBUILDTIME

 | AUTHENTICATIONMODE

 | INSTALLATIONMODE

task:

 QUERY | QUERIES

 | JOB[S]

 | VIEW[S]

 | STREAMSESSION[S] | STREAM[S]

 | CLIENTSESSION[S] | USER[S]

See Get and Common Elements for additional sub-clause definitions.

Examples

Get Snapshot Fields All

Get Repository where Active Is true

Get Active Streams

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 51 © 2019–2024 meshIQ

Get Items or Get ItemTypes

– generates a table of item types and their characteristics.

Get fields

–shows a list of fields and corresponding data types.

Get fields for events

–populates a table of the fields of events and their characteristics.

Get custom fields for events

–shows custom (properties) fields of events.

Get parameters

–provides a table with information about the application.

Get keywords

–provides a list of all possible jKQL query grammar keywords.

Get analytic functions

–displays a table of the analytic functions and their characteristics.

Get active <task>

–shows the active tasks: Job (i.e., data importing is in progress), Query, View,

MlModel, User sessions, or data streaming sessions.

Get providertype

–provides a table with possible provider types - and their specifications.

3.4.4.3 Get Concepts

3.4.4.3.1 Result Limiting

Result Limiting is used for limiting the number of records in a result based on some

quantitative measure (see the definition of limit_expr above for the set of limiting types

that is supported). The system will apply defaults based on the quantitative measure

specified and the type of item chosen, as follows:

Table 21. Default Limiting Processing

EARLIEST

ACTIVITY, EVENT StartTime

SNAPSHOT SnapshotTime

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 52 © 2019–2024 meshIQ

When processing limiting expressions, based on the limiting type and field(s) used, the

records are sorted in their appropriate order, and then the first N number of records are

returned. Most of the orders should be fairly self-explanatory (e.g., Earliest sorts dates

in ascending order, Latest sorts them in descending order, etc.). For the enumeration

fields listed above, the enumerations are defined in such a way that the order of the

enumerations happened to be defined in sequence from “best” to “worst”, so the

enumeration fields are simply sorted by numeric value (for “best”, sorted ascending, for

“worst”, descending).

Now, when using limiting type and item type combinations other than the default cases

above, the limiting expression will have no effect on the result, other than just returning

Table 21. Default Limiting Processing

RELATIVE, DATASET UpdateTime

LOG, JOB ReportTime

<Others>
<default date field>, if

defined

LATEST

ACTIVITY, EVENT EndTime

SNAPSHOT SnapshotTime

RELATIVE, DATASET UpdateTime

LOG, JOB ReportTime

<Others>
<default date field>, if

defined

SHORTEST,

LONGEST
ACTIVITY, EVENT, JOB ElapsedTime

TOP,

BOTTOM,

BEST,

WORST

ACTIVITY ActivityStatus, Severity

EVENT Severity, CompletionCode

JOB CompletionCode

LOG Severity

LARGEST,

SMALLEST

ACTIVITY EventCount

EVENT, LOG, JOB MessageLength

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 53 © 2019–2024 meshIQ

the first N number of records. However, you can use the BASED ON field_expr_list

clause to specify specific field(s) to use to either change the default behavior as specified

above, or to give field(s) to use where there is no default support. For example:

Get Worst 10 Activities Based On Severity,ActivityStatus

This statement switches the default criteria for “worst”, by getting the 10 Activity records

with the “worst”, or most severe Severity values, and among those with the same Severity

value, choosing the records with the “worst” ActivityStatus.

One additional feature is the ability to apply the limiting criteria separately based on the

values of another field, using the PER field_name clause. Note that only a single field is

supported. An example of this is the following:

Get Longest Event Per Severity

This query returns the longest event (based on default ElapsedTime field) for each unique

Severity value. So, if there are 10 unique Severity values, this result will contain 10 records,

where each record represents the longest Event with that Severity value. You can also get

a number of Events per Severity, for example:

Get Longest 5 Events Per Severity

Assuming the same 10 unique Severity values, this result will contain 50 records: 5 for each

unique Severity value containing the 5 longest events with that Severity value.

3.4.4.3.2 Result Grouping

Result Grouping allows for aggregates calculations on records grouped on specified

criteria. For those familiar with SQL, this behaves similarly to SQL grouping, with some

extensions. The records are grouped based on the values for the list of group fields. If

multiple fields are being grouped on, an output record (group) is generated for each

unique value in each of the grouped fields. When grouping on one or more fields, the

value for fields other than those being grouped on must be the result of an aggregation

function (see Built-in Aggregate Functions). If no specific aggregations are specified, then the

result will simply be a count of the records in each group. For example, the query:

Get Events Group By Severity

Is interpreted as:

Get Number Of Events Group By Severity

By default, each distinct value for a grouped field is in a different group. There are cases

where a range of values for one or more grouped fields should be put in the same group.

This is accomplished with the BUCKETED [BY bucket_expr] clause. This clause puts all

values in a defined range into the same group for the purposes of aggregating. The most

common uses of this are on timestamp fields, where the aggregations should be done on a

range of timestamps (e.g., per hour or per day), although any numeric field can be

bucketed. If an explicit bucket size is not specified, then the system will attempt to

compute an appropriate bucket size based on the data type of the field being bucketed on

and the range of values for records that match the query filters.

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 54 © 2019–2024 meshIQ

There are several ways in which the final result set can be restricted. One way is the TRIM

{NONE | ENDS | ALL} clause, which defines how to process groups/buckets that do not

have any records, as follows:

• NONE – does not remove any empty groups/buckets from the result.

• ENDS – removes empty groups/buckets from either end of the result set, so that the

first and last result records contain at least one item in the group.

• ALL – removes all empty groups/buckets from the result.

Another way is with the INCLUDE NULLS clause, which indicates how to process

groups/buckets that do not have a value for one or more of the group fields, as follows:

• If this clause is specified, all result records will be included in the final result, even

those that do not have a value for the group field (essentially, this includes grouped

results for records that have missing field(s)).

• If this clause is not specified, only records that have a value for every group field will

be included in the final result.

Finally, the records returned in the final result set can be restricted using the HAVING

bool_expr clause, which will remove from the final result set any records that do not

match the HAVING condition.

3.4.4.3.3 Result Sorting

Result sorting allows the rows in the final result to be ordered based on a specific set of

fields. Anyone who’s used SQL is probably very familiar with result sorting. In jKQL, the

sort specification can refer to the columns to sort on, by either name or number, and in

either ascending or descending order.

3.4.5 Find
The Find statement is used for searching a word or phrase across all database entries in a

single command. Unlike Get statement that only queries for one type of item, Find is

executed across all item types (the set of item types can be adjusted). Also, the search

phrase is case-insensitive. Find is a very specialized command, returning the primary keys

for items that contain the search phrase and match any specified filters. Its main purpose

is to be used by a visualization tool for providing search results.

Find has the following syntax:

FIND string

 [IN search_field [, search_field ...]]

 [FROM set_name [, set_name ...]]

 [CATEGORIZE BY field_expr_list]

 [filter [filter ...]]

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 55 © 2019–2024 meshIQ

 [{SORT | ORDER} BY

 (RELEVANCE | sort_field_expr [, sort_field_expr ...])

 [page_expr]

 [{SHOW | DISPLAY} AS show_type [(show_param [, show_param

...]]

 [stmt_options]

search_field:

 [item_type:] label

field_expr_list:

 field_expr [, field_expr ...]

field_expr:

 field_name [(key_name [, key_name ...])]

sort_field_expr:

 {field_expr | integer | NUMBER OF | PERCENT OF} [ASC | DESC]

See Common Elements for additional sub-clause definitions.

Examples

To simply search for the word “orders”, run:

Find 'orders'

To search for either of the words “web” or “orders”, run:

Find 'web orders'

To search for the exact phrase “web orders”, run (notice the nested quotes):

Find '"web orders"'

To search for either of the words “web” or “orders” in all fields of only Activities and Events,

run:

Find 'web orders' In Events,Activities

To search for either of the words “web” or “orders” only in the Message field of Events, run:

Find 'web orders' In Events:Message

See Searching for more advanced examples, along with a description of the format of Find

results.

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 56 © 2019–2024 meshIQ

3.4.6 Compare
The Compare statement is used for comparing the fields and values for several items of the

same type. The Compare statement has the following syntax:

COMPARE [ONLY DIFFS

 | NUMBER OF [AND PERCENT OF]

 | PERCENT OF [AND NUMBER OF]]

 [item_type {IN | OF | FOR}]

 [limit_expr]

 item_type [item_name]

 [FROM set_name [, set_name ...]]

 [AS alias]

 [[FIELDS] {query_expr_list | ALL}]

 [BASED ON field_expr_list]

 [filter [filter ...]]

 [GROUP BY group_by_expr [, group_by_expr ...]

 [TRIM {NONE | ENDS | ALL} | INCLUDE NULLS]

 [HAVING bool_expr]]

 WITH compare_target [AS alias]

 [WITH compare_target [AS alias] ...]

 [{SHOW | DISPLAY} AS show_type [(show_param [, show_param

...]]

 [stmt_options]

compare_target:

 item_name [filter [filter ...]]

 | {limit_expr | selector} [item_name] [filter [filter ...]]

 | bool_expr

 | date_expr [WHERE bool_exp ...]

selector:

 PREVIOUS

 | NEXT

 | PRIOR

See Get for additional sub-clause definitions.

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 57 © 2019–2024 meshIQ

Examples

To compare the average elapsed times for events last month with those for this month:

Compare Events Fields Avg(ElapsedTime) For Last Month as 'Last Month'

With This Month as 'This Month'

3.4.7 Insert, Update, Upsert
The Insert, Update, and Upsert statements are used for inserting/updating physical items

in the database. The behavior of each statement type is as follows:

• Insert: Items that do not exist are inserted. Statement fails if item already exists.

• Update: Items that already exist are updated. Statement fails if item does not

exist.

• Upsert: Items that do not exist are inserted, and items that do exist are updated.

The Insert, Update, and Upsert statements have the following syntax:

(INSERT | UPDATE | UPSERT)

 item_type

 field_value_expr [, field_value_expr ...]

 [filter [filter ...]]

 [stmt_options]

field_value_expr:

 field_name [(key_name)] [+|-]= field_value

field_value:

 value

 | value_list

 | map_value_list

map_value_list:

 ([data_type:] key [= value] [, [data_type:] key [= value] …])

data_type:

 S

 | C

 | I

 | D

 | T

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 58 © 2019–2024 meshIQ

 | V

 | B

See Get for additional sub-clause definitions.

The += and -= operators can be used to add values to or remove values from a field that is

a list or map, respectively. Otherwise, the specified value(s) will replace the current value(s)

for the field.

To specify map field keys, the syntax is:

X:key=value

The syntax values are defined in the following table.

If data type is not specified, then it will be inferred from the value. If value is not specified,

then the key is removed from the map field.

Examples

Upsert Event EventID='04028594-dda3-11e5-8dc9-fc3fdbd33584',

EventName='TheEvent', Tag=('tag1','tag2'), Properties=(S:'key1'='the-

value', I:'key2'=123)

3.4.8 Delete
The Delete statement is used for removing physical items from the database. The Delete

statement has the following syntax:

Table 22. Map Field Keys Syntax Values

X

Data type of the key value, interpreted as follows:

S String

C Clob

I Integer value

D Decimal value

T Timestamp

V Timeinterval

B Boolean value (true or false)

key Map key (custom property name) – always a STRING

value
Key’s value (custom property value) – interpreted based

on data type specified above

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 59 © 2019–2024 meshIQ

DELETE item_type [item_name]

 [FROM set_name [, set_name ...]]

 [filter [filter ...]]

 [stmt_options]

See Get for additional sub-clause definitions.

3.4.9 Reset
The Reset statement is used for clearing (resetting) a field for one or more items.

Currently, Reset is only supported for the Statistics and Objectives fields of the Relatives

item. The Reset statement has the following syntax:

RESET RELATIVES [field_name [,field_name ...]]

 [FROM set_name [, set_name ...]]

 [filter [filter ...]]

 [stmt_options]

See Get for additional sub-clause definitions.

If no fields are specified, then all resettable fields are reset.

3.4.10 Enable / Disable
The Enable and Disable statements are used for enabling (activating) and disabling

(deactivating) one or more items. It is supported for items that support the Active field:

• Action (requires Organization name)

• View

• User

• InputDataRules

• MlModel

• Repository (requires Repository ID, not just simple name)

These statements have the following syntax:

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 60 © 2019–2024 meshIQ

ENABLE item_type item_name [, item_name ...]

 [FOR ORGANIZATION item_name]

 [stmt_options]

DISABLE item_type item_name [, item_name ...]

 [FOR ORGANIZATION item_name]

 [stmt_options]

See Common Elements for additional sub-clause definitions.

3.4.11 Grant
The Grant statement is used for allowing access to an item or set of items. The Grant

statement has the following syntax:

See Get for additional sub-clause definitions.

The clause “FOR ORGANIZATION item_name“ is required when granting access to or on a

Team or Repository, since teams and repositories are only unique within an organization.

See Access Control for description of jKQL access control.

Examples

To make user “User1” an administrator for organization “Org1”:

Grant Modify To User 'User1' On Organization 'Org1'

To make user “User1” a member of team “Team1”:

Grant View To User 'User1' For Organization 'Org1' On Team 'Team1'

To make all members of team “Team1” administrators of organization “Org1”:

GRANT {ALL | access_type}

 TO item_type item_name [, item_name ...]

 [FOR ORGANIZATION item_name]

 ON item_type [item_name [, item_name ...]]

 [WHERE bool_expr]

 [stmt_options]

access_type:

 OWNER[SHIP]

 MODIFY

 VIEW

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 61 © 2019–2024 meshIQ

Grant Modify To Team 'Team1' On Organization 'Org1'

To allow all members of organization “Org1” to create items in repository “Repo1”:

Grant Modify To Organization 'Org1' For Organization 'Org1' On

Repository 'Repo1'

To make all members of team “Team1” administrators of all sets that start with prefix

“COM”:

Grant Modify To Team 'Team1' For Organization 'Org1' On Sets WHERE

SetName starts with 'COM'

3.4.12 Revoke
The Revoke statement is used for removing access to an item or set of items. The Revoke

statement has the following syntax:

REVOKE {ALL | access_type}

 FROM item_type item_name [, item_name ...]

 [FOR ORGANIZATION item_name]

 ON item_type [item_name [, item_name ...]]

 [WHERE bool_expr]

 [stmt_options]

access_type:

 MODIFY

 VIEW

See Get for additional sub-clause definitions.

The clause “FOR ORGANIZATION item_name“ is required when revoking access from or on a

Team or Repository, since teams and repositories are only unique within an organization.

Note that Ownership cannot be revoked. There is exactly one owner. To remove an

owner, simply Grant ownership to a different entity. See Access Control for description of

jKQL access control.

Examples

To remove user “User1” as an administrator for organization “Org1”, leaving them as an

ordinary user (with View access):

Revoke Modify From User 'User1' On Organization 'Org1'

To remove user “User1” from organization “Org1” completely:

Revoke View From User 'User1' On Organization 'Org1'

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 62 © 2019–2024 meshIQ

3.4.13 Purge
The Purge statement is used to clear out repository data for some or all items. The Purge

statement has the following syntax:

PURGE [REPOSITORY] repository_id [ALL | [STREAMING] DATA]

 [FOR date_expr [TO date_expr]

 | {REPORTED | RECEIVED | CREATED | UPDATED | EXPIRING

 | {STARTED | STARTING} | {ENDED | ENDING}}

 {[IN | WITHIN] date_expr [TO date_expr]

 | {SINCE | AFTER | BEFORE} date_expr}

 | {SINCE | AFTER | BEFORE} date_expr]

Specifying ALL removes all data for all items, leaving the repository completely empty.

Specifying STREAMING DATA, or just DATA, removes only streaming-related data (Activities,

Events, Snapshots, Datasets, Relatives, Sources, Resources), leaving all other items in place.

If neither is specified, then it defaults to STREAMING DATA. Specifying a date filter will

restrict the purge to data in the specified date period.

3.4.14 Compute
The Compute statement is used to run analytic functions. Some analytic functions are

capable of determining the data that they should run on, so thus do not need an input

result. Examples are the Machine Learning functions that require a model name, since

these functions use the model definition to determine what data is needed.

Others, however, require that an input result be passed to them, so these Compute

instances need to be run in a statement chain, in which the prior statement returns the

result to be used as input to the analytic function (see Statement Chain for details on using

statement chains).

The Compute statement has the following syntax:

COMPUTE analytic_func_expr

 [WHERE bool_expr]

 [{SORT | ORDER} BY sort_field_expr [, sort_field_expr ...]

 [RANGE row_start , row_count]

 [{SHOW | DISPLAY} AS show_type [(show_param [, show_param ...]]

 [stmt_options]

analytic_func_expr:

 func_expr

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 63 © 2019–2024 meshIQ

The filters and sorting are applied to the result of the analytic function, allowing only partial

results to be returned, and/or changing the default order of the results.

Examples

To get the full result:

Compute Expected('SPECIES', "", false)

To return only certain rows:

Compute Expected('SPECIES', "", false) Where PETAL_LENGTH > 1.5

To return only certain rows and order them:

Compute Expected('SPECIES', "", false) Where PETAL_LENGTH > 1.5 Sort By

PETAL_LENGTH Desc

To just get the first 10 rows:

Compute Expected('SPECIES', "", false) Range 1,10

3.4.15 Invoke
The Invoke statement is used to execute actions, which are instances of the defined

provider types, and jKQL Scripts. The Invoke statement has the following syntax:

INVOKE {PROVIDERTYPE | ACTION} string

 [USING [PROPERTIES] map_value_list]

 [WHERE bool_expr]

 [{SORT | ORDER} BY sort_field_expr [, sort_field_expr ...]

 [RANGE row_start , row_count]

 [{SHOW | DISPLAY} AS show_type [(show_param [, show_param

...])]]

 [stmt_options]

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 64 © 2019–2024 meshIQ

INVOKE SCRIPT {string | FROM file | TEXT string}

 [USING [PROPERTIES] map_value_list]

 [WHERE bool_expr]

 [{SORT | ORDER} BY sort_field_expr [, sort_field_expr ...]

 [RANGE row_start , row_count]

 [{SHOW | DISPLAY} AS show_type [(show_param [, show_param

...])]]

 [stmt_options]

file:

 string

See Insert, Update, Upsert for definition of map_value_list. See Common Elements for

additional sub-clause definitions.

See Executing jKQL Scripts for details on using Invoke for executing jKQL Scripts.

Provider Types and Actions are discussed in detail in Alerts. Here, we’ll just mention that

Provider Types represent the implementation of a type of provider, e.g., a provider that

implements sending an email. Each Provider Type defines a set of properties controlling its

execution. An action is an instance of a Provider Type that defines all missing properties so

that a complete set of properties exists to allow the implementation to execute.

Examples

Run Action “Email”, setting the contents of the email:

Invoke action 'Email' Using ('Message'='Called from INVOKE')

Run Provider Type “EmailProvider” directly:

Invoke 'EmailProvider' Using

('MailFrom'='sender@xyz.com',

 'MailTo'='receiver1@abc.com, receiver2@abc.com',

 'ServerHost'='mail.server.xyz.com',

 'ServerUser'='sender@xyz.com',

 'ServerPwd'='sender_pwd',

 'Subject'='Invoke',

 'Message'='Called from INVOKE')

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 65 © 2019–2024 meshIQ

3.4.16 Train
The Train statement is used to manually initiate the training of an MLModel definition. The

Train statement has the following syntax:

TRAIN [MODEL] string

Examples

Initiate training of model “TimeSeriesModel”:

Train Model ' TimeSeriesModel'

Refer to the Machine Learning Guide in the Resource Center for more information about

model training.

3.5 jKQL Fields

There are fields whose values are jKQL expressions or that follow a specific format.

Includes the below as well as policies, statistics, and computed fields.

3.5.1 Primary Key Fields
Each item has one or more primary key fields, which as a group uniquely identify a

particular item. For primary key fields whose data type is STRING, the valid set of

characters is defined below. Note that <sp> denotes the space character.

For other item types that contain string-based primary key fields, there is no limitation on

the characters accepted in those fields.

Table 23. Primary Keys

Sets 0-9a-zA-Z_@

Dictionaries 0-9a-zA-Z_@

ProviderTypes 0-9a-zA-Z_@

Actions 0-9a-zA-Z_@

InputDataRules 0-9a-zA-Z_@

ViewTemplate 0-9a-zA-Z_@

View 0-9a-zA-Z_@

MLModel 0-9a-zA-Z_@

Script 0-9a-zA-Z_@

https://customers.meshiq.com/hc/en-us

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 66 © 2019–2024 meshIQ

3.5.2 Fully Qualified Name (FQN)
A fully qualified name (FQN) is a string that is interpreted as a hierarchical sequence of

components. Fields that are fully qualified names include SourceFQN, ResourceName,

ParentFQN, and ChildFQN. The general format of a FQN is:

COMP1=VAL1#COMP2=VAL2#...

The most common example is that of the SourceFQN (ParentFQN and ChildFQN are

instances of a SourceFQN) for an Event or Activity, which usually has the general form of:

APPL=myapp#SERVER=myserver#NETADDR=11.22.33.44#DATACENTER=mydc#GEOADDR=

mylocation

This is interpreted as: application “myapp” running on server “myserver” at network

address “11.22.33.44” in datacenter “mydc” in “mylocation”. If GEOADDR is not specified

but NETADDR is, the system will attempt to resolve the NETADDR to a geolocation.

For ResourceName, while it does not have to conform to the FQN format, if it does, similar

logic is applied, but the first “component” designates the type of resource, along with its

simple name. The components after that further qualify the name to define a unique

resource instance, for example:

QUEUE=myqueue#SERVER=myserver

This is interpreted as queue “myqueue” defined on server “myserver”.

When processing streamed data with a SourceFQN, the SourceFQN is parsed into its

individual components, and the values of these individual components are stored as

individual fields. The SourceFQN components that are stored as individual fields are:

FQN Component Field Name

SERVER ServerName

APPL ApplName

NETADDR Address

DATACENTER DataCenterName

GEOADDR GeoLocation

APPSERVER AppServerName

PROCESS ProcessName

USER SourceUserName

RUNTIME RuntimeName

VIRTUAL VirtualSrcName

NETWORK NetworkName

DEVICE DeviceName

GENERIC GenericSrcName

These individual fields are considered “derived” fields, which means they cannot be

explicitly set via an Upsert statement. They can only be set as a result of setting the

SourceFQN field for an item that is in the format described above.

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 67 © 2019–2024 meshIQ

We also do the same for ResourceName, where the ResourceName field is parsed and the

component type of the first component of the ResourceName set as the ResourceType. In

the example above, where the first component of the ResourceName is “QUEUE”, the

ResourceType field is set to QUEUE.

3.5.3 Criteria
The Criteria field is used to determine if an item matches rules for inclusion. This is a

STRING field whose syntax is the same as a jKQL filter condition. One such use of this field

is in Sets, where Criteria field is used to determine what item(s) belong to the set.

criteria: bool_expr

See Get for additional sub-clause definitions.

To include items that access a particular resource:

ResourceName = 'QUEUE=PAYMENTS.QUEUE'

To include items from application “RouteOrder”:

ActivityName = ' RouteOrder'

3.5.4 Objectives
Objectives field is used to define or hold results of conditions that should be met (or that

should NOT be met). Objectives are considered MET when the Objective condition

evaluates to TRUE, and NOT MET when the condition evaluates to FALSE. Objective names

can consist of only the following characters:

0-9a-zA-Z-.&_/()@+=*[]<sp>

Objectives can be thought of in either or both of the following ways:

• Conditions that SHOULD be met – in this scenario, you would define the specific

conditions that must ALWAYS be true, and therefore objectives that WERE NOT MET

would be exceptional conditions.

• Conditions that SHOULD NOT be met – in this scenario, you would define the

specific conditions that should NEVER be true, and therefore objectives that WERE

MET would be exceptional conditions.

Which philosophy to apply depends on the nature of the condition and whether the

condition can change during the life of the activity. Both can be used by different

objectives in the same Set.

Objectives is a MAP field, whose structure is dependent on the particular item on which it is

used, as follows:

NOTE

Do not include the @ symbol in the ResourceName field. The @ symbol is reserved in jKQL to
identify servers. Using it can cause streamed resource names to be truncated in Topology viewlets.

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 68 © 2019–2024 meshIQ

• Sets – in a Set definition, the Objectives field defines the set of conditions that items

in the set should meet (condition evaluates to true), and is interpreted as follows:

o Key – Objective name

o Value – a string containing a jKQL Objective Filter, which has the following

format:

set_obj: bool_expr [WHERE bool_expr]

See Get for additional sub-clause definitions and for full description of bool_expr.

Examples:

Must complete in 10 seconds:

ElapsedTime <= 10 seconds

Must have no exceptions:

Count(Exception) = 0

All operations completed successfully:

Count(EventId) = 0 where CompCode != 'SUCCESS'

• Events, Activities, Snapshots – for these items, the Objective field contains the status

of all Objectives for all Sets that the items belong to. In order to efficiently resolve

all possible queries based on the status of objectives, the Objective statuses are

stored with respect to 4 different views:

o All Met/Unmet Objectives – separate distinct lists of all objectives met, and all

not met.

o Set Met/Unmet Objectives – separate distinct lists by Set name of all

objectives met and all not met from that particular Set.

o Objective Met/Unmet Objectives – separate distinct lists by Objective name

of all sets from which the objective was met and was not met.

o Individual Objectives – a single entry by Objective that indicates whether it

was met or not met.

While it is certainly possible to create jKQL queries to retrieve specific parts of the

Objective status for items, it is much simpler to use the THAT clause in a query to

interrogate the objective statuses. The jKQL parser will determine which of these

views to use in order to answer the query. See Get for full description of THAT, along

with examples.

Since Objective names are only unique within an individual Set, multiple Sets can

have the same Objectives (with different conditions). So, individual Objectives are

stored as fully qualified names, in the form: SetName.ObjectiveName.

jKQL User’s Guide Chapter 3: jKQL

JKQLUG11.008 69 © 2019–2024 meshIQ

3.5.5 SetSequence
The SetSequence field is used to hold the graphical representation of a sequence of sets. It

is an edge list, with each entry in list defining the from-node and the to-node using the

following syntax: from:to. For example, the sequence of A sends to B, which sends to C

and D would be represented as follows:

A:B, B:C, B:D

This field is currently supported in the following items:

• Set – Only supported in Related sets, where it defines the expected sequence of its

subsets (those that are Singular sets).

• Activity – Only supported for the root activity in an Activity-Event hierarchy, where it

defines the observed sequence of subsets.

3.5.6 jKQL (Generic jKQL Statement)
Some item types support the generic field “JKQL”, which is a string that is interpreted as a

jKQL “statement”. The definition of the field itself does not impose a specific format, but

the item type using it generally will.

The current use of this field is in View definitions (See Views and ViewTemplates for details).

3.5.7 EffectiveRole
This field is only valid with queries. When requested with query, it returns the effective

access to the objects in the result. See Access Control for more details.

JKQLUG11.008 70 © 2019–2024 meshIQ

Chapter 4: Concepts

4.1 Implicit Date Filtering

Queries can filter on items based on a variety of date filters. If an item supports at least

one date field, then queries for that item can filter based on specific date fields and/or by

generic date expressions. There are several ways in which the date filter can be specified:

• Explicitly, filtering on one or more specified timestamp fields, for example:

Get Events where StartTime Is Between 'yyyy-MM-dd hh:mm:ss' And 'yyyy-

MM-dd hh:mm:ss'

• Explicitly, filtering on items for a specific time period, for example:

Get Events For Today

• Implicitly, using one of the date-based “limiting” clauses (see Result Limiting), for

example:

Get Latest 20 Events

• Implicitly, where filtering is done by adding a “For <time-period>”, where the

<time-period> is the “default” date filter associated with user’s session (this default

is what is applied if none of the above is used). This is only done for items related to

streaming, where the number of records can be extremely large.

In the first example, the field being used is explicitly specified, so there is no question as to

what values are being filtered on. But what of the others, since no field was specified? For

limiting-type filters, the section on Result Limiting describes what fields are used for various

expressions.

For the other two cases (For <time-period>), the field that is used is the system-defined

default date field for the item type. The default date fields are listed below.

Table 24. System-defined Default Date Fields by Item Type

Event StartTime

Activity StartTime

SnapShot SnapshotTime

DataSet DatasetTime

Job ReportTime

Log ReportTime

QuotaUsage StartTime

jKQL User’s Guide Chapter 4: Concepts

JKQLUG11.008 71 © 2019–2024 meshIQ

For all other items, if the item supports the UpdateTime field, then that is used as the

default date field. (UpdateTime is the time the item was written to data store.) Otherwise,

no implicit filter is used.

Take, for example, the query listed earlier:

Get Events For Today

This is interpreted as:

Get Events where StartTime Is Between '<yyyy-MM-dd> 00:00:00.000000'

and '<yyyy-MM-dd> 23:59:59.999999'

Where “<yyyy-MM-dd>” is the current date.

One thing worth noting here is that when items whose default date field is NOT

UpdateTime are implicitly filtered by date, items that were expected to be returned by a

query are not.

As a simple example, let’s say we have an Event that occurred and was recorded yesterday.

This Event will have StartTime and EndTime values sometime yesterday. However, this

data is not actually streamed (and therefore stored in data store) until today. If you run the

query Get Events For Today, the query will NOT return this data, because even though it

was written today, the event is actually for yesterday, since For Today is using StartTime

field value, which occurred yesterday.

4.2 Searching

As mentioned in the Find command section (Section 3.4.5), all records of all item types can

be searched in a single command. By default, the search is done across all fields of all non-

admin item types, but which item types and/or fields are searched is configurable.

The search phrase supports various formats:

• 'orders' – finds all documents containing the sequence of characters: 'o' 'r'

'd' 'e' 'r' 's'

• 'web orders' – finds all documents containing either the sequence of characters:

'w' 'e' 'b' or the sequence of characters: 'o' 'r' 'd' 'e' 'r' 's'

• '"web orders"' – finds all documents containing the exact sequence of characters:
'w' 'e' 'b' ' ' 'o' 'r' 'd' 'e' 'r' 's'

• 'web -orders' – finds all documents containing the sequence of characters: 'w'

'e' 'b' AND NOT containing the sequence of characters: 'o' 'r' 'd' 'e' 'r'

's'

The structure of the search result is a bit more complicated than with other jKQL results.

As mentioned previously, the main purpose for search is to be used by a visualization tool

for providing search results. The structure of the result set returned by Find consists of 2

parts:

• A collection of rows containing the keys of the items that match the search phrase

• A collection of Category counts, showing the number of items per category value

matching the search phrase

jKQL User’s Guide Chapter 4: Concepts

JKQLUG11.008 72 © 2019–2024 meshIQ

The columns of the result set consist of:

• ItemType

• Union of all primary key fields of all included item types

• Any fields mentioned in sort clause

• NumberOf, which contains the number of occurrences of the search phrase in the

particular item

• Score, which contains a computed relevancy score

• Properties, which contains a map of (field,values) that contain the search phrase

The Category counts is a map of maps, whose key is a field type, and whose value is a map,

where the key is a field value, and whose key value is a count of the number of items with

that field value that contained search phrase. Category counts for ItemType, Severity, and

SetName are always included. Additional ones can be added with Categorize close of Find

statement.

The order that the result rows is returned can be controlled by the Sort clause of Find

statement. By default, the rows are ordered by Relevance, which is defined as: NumberOf

Desc, Score Desc. That is, it first sorts by the number of occurrences of the search phrase

in the item, with higher counts first, and for items with same number of occurrences, sorts

the ones with highest relevancy score first.

Finally, although it’s not required, it’s expected that the Page clause will be used to page

through the search results. See Result Paging for details on using Page clause.

4.3 Set Membership

As part of event and activity analysis, after stitching (relating events and activities based on

shared correlators), events and activities are mapped to sets. Set membership is

determined by a couple of factors:

• The scope of the set

• The event or activity matching the criteria for being in the set (set’s criteria filter

evaluates to true)

• The event or activity’s relationship to other events

For sets whose scope is “Singular”, only the specific events and activities that match the

criteria are included in the set. These types of sets are commonly referred to as

“milestones”, as they can be used to mark whether a specific event or activity occurred.

For sets whose scope is “Related”, not only are the specific events and activities that match

the criteria included, but all the events and activities related to (stitched to) are also

included in the set.

One important thing to remember is that set definitions are applied only during the

analysis. Sets that are defined after the processing of an event or activity will not be

applied to the already-processed items.

jKQL User’s Guide Chapter 4: Concepts

JKQLUG11.008 73 © 2019–2024 meshIQ

4.3.1 Objectives
As mentioned previously, a set can have one or more objectives defined for it, which

represent conditions that all members of the set should meet. After determining set

membership, the objectives for all sets that the current activity or event maps to, along

with all their related activities and events, are evaluated, with Singular sets being done first,

followed by Related sets. Each event and activity is updated with the status of each

objective from its sets, which is one of 2 states:

• MET – the objective condition evaluates to true

• NOT MET – the objective condition evaluates to false

It’s possible for the objectives to be evaluated several times, based on the analysis of an

activity, and thus the state of the objective for a particular event or activity can change,

possible several times, so keep this in mind when monitoring objectives.

There are 2 ways to think of objectives:

• “Positive” condition, where meeting objective indicates success and not meeting

objective indicates an anomaly.

• “Negative” condition, where meeting objective indicates an anomaly, and not

meeting the objective indicates success.

To demonstrate, consider an objective named “SLA” that defines the time in which an

activity should be completed. This objective can be defined as either:

• ElapsedTime <= 10 seconds

• ElapsedTime > 10 seconds

In the first case, meeting the objective is the desired state, and if not met, there is an

anomaly. In the second case, not meeting the objective is the desired state, and if met,

there is an anomaly. Which way to define objectives is purely a choice, and you can use a

mix of these. Depending on the condition, choosing one over the other may result in less

false anomalies being indicated.

4.4 Relatives

Relatives represent the observed relationships between event and activity Sources, as well

as the relationships between Singular Sets. These relationships are evaluated during event

and activity analysis, after applying set membership and evaluating objectives. As

previously mentioned, there are 3 types of relationships that are computed. Here, we’ll

discuss the specifics of how this is done.

4.4.1 Encloses
Encloses relationships define an “encloses” or “contains” relationship between 2 sources.

These relationships are determined by the Fully Qualified name of the event or activity

source (SourceFQN field). A SourceFQN is a string containing each of the components in

the ecosystem for the source to uniquely represent it. It is similar to a filesystem path

string, except that SourceFQN is interpreted in a “bottom-up” order, from individual item

jKQL User’s Guide Chapter 4: Concepts

JKQLUG11.008 74 © 2019–2024 meshIQ

up to the “root” (where a path string is interpreted “top-down” from root to individual file).

So, when computing these relationships, we simply split the SourceFQN into its

components, and build Encloses relationships between adjacent components, starting

from the end and working toward the front.

As an example, consider the following SourceFQN:

APPL=myapp#SERVER=test#NETADDR=1.2.3.4#DATACENTER=DC1#GEOADDR=New York

The ‘#’ character is the component separator, so if we split this string at the #’s, and then

look at the components from right to left, we create the following Encloses relationships:

• GEOADDR New York Encloses DATACENTER DC1

• DATACENTER DC1 Encloses NETADDR 1.2.3.4

• NETADDR 1.2.3.4 Encloses SERVER test

• SERVER test Encloses APPL myapp

4.4.2 Send To
Send To relationships indicate that we observed 2 event sources referencing the same data

item, with one of the events being a SEND and the other being a RECEIVE. The TNT4J API

allows an identifier (Tracking ID) to be associated with an event, and the Tracking ID is

assumed to be based on the unique data item being exchanged. So, in order for a Send To

relationship to be detected, there has to be 2 events, one a SEND and the other a RECEIVE,

where both events have the same Tracking ID (which is NOT the event’s ID).

The Send To relationships are created between the corresponding components of the 2

event sources (e.g., APPL to APPL, SERVER to SERVER, etc.).

As an example, if we have a SEND event with SourceFQN:

APPL=sendapp#SERVER=server1#NETADDR=1.2.3.4

And a RECEIVE event with Source FQN:

APPL=recvapp#SERVER=server2#NETADDR=44.33.22.11

With the same Tracking ID, we would create the following Send To relationships:

• APPL sendapp Send To APPL recvapp

• SERVER server1 Send To SERVER server2

• NETADDR 1.2.3.4 Send To NETADDR 44.33.22.11

4.4.3 Acts On
Acts On relationships indicate that we observed an event source “acting on” or

“manipulating” a Resource. These are derived from individual events that have both a

SourceFQN and a Resource defined. The Acts On relationships are created between each

component of the SourceFQN and the Resource. If the event is a SEND or RECEIVE, we

qualify the Acts On relationship with either Write or Read, respectively.

jKQL User’s Guide Chapter 4: Concepts

JKQLUG11.008 75 © 2019–2024 meshIQ

4.4.4 Correlated
Correlated relationships show how the various activities/events within a single root activity

are linked. This is more of a troubleshooting aid for helping identify why events that

should not be related are in fact related.

4.5 Computed Fields

Computed Fields are those represented by a jKQL expression; they are evaluated against

the other fields or properties of an item. They are currently used in Input Data Rules, to

define how to compute the values of item fields when data is ingested (streamed). The

Computed Field definition is a map of (FieldExpr, jKQLExpr), where FieldExpr is either a

built-in field name, or a custom property specification. jKQLExpr is a jKQL expression that

evaluates to a specific value of the appropriate data type for the field.

The general format of a Computed Field entry is:

FieldExpr=[+=]jKQLExpr

With the += operator specified, the value of the jKQLExpr is appended to the current list of

values for the field, as specified in raw streaming data. Without the +=, the value for the

field is set to the result of jKQLExpr, replacing any value specified in raw streaming data.

Some examples of defining Computed Fields:

'Tag'='+=SubStrRE(Message, ".*(CustomerID=)([0-9]+).*", 0, 2)'

'Property("DayOfWeek")'='DayOfWeek(Now())'

The first example matches the regular expression (CustomerID=)([0-9]+) anywhere in the

Message field and extracts the second regular expression group (which is the customer ID)

as the value and appends it to the list of tags included in the raw input data.

The second example sets a custom property DayOfWeek to the day of the week that the

event was streamed.

The most common use is computing fields based on the values of other fields included in

the raw input stream.

As a simple example, assume we have Send/Receive events whose message payload has

the following format:

ShipProductId=<id1>, ProductName=<id2>, CustomerID=<id3>

An example of which is:

ShipProductId=8380203, ProductName=iPhone, CustomerID=848383

An Input Data Rules definition can be defined that applies only to Send and Receive events,

and that adds the CustomerID value to the list of tags for the event as follows:

Upsert InputDataRules

 Name='Sends Receives',

 ItemType='Event',

 Criteria='EventType in ("SEND","RECEIVE")',

 Active=true,

jKQL User’s Guide Chapter 4: Concepts

JKQLUG11.008 76 © 2019–2024 meshIQ

 ComputedFields=('Tag'='+=SubStrRE(message, ".*(CustomerID=)([0-

9]+).*",0, 2)')

4.6 Actions

Actions provide a framework for performing a given operation on the result of a jKQL

query. An example of an action is sending an email.

In general, each component of the framework contains a name and a set of properties

controlling its behavior. Also, components can be enabled and disabled. The sections

below outline the components of this framework.

4.6.1 Provider Type
A provider type represents the specific implementation of the physical action to take, like

writing to a file or sending an email. The available provider types are defined by the

system and can be queried for using the jKQL query: Get ProviderTypes. This will list

each available provider type, along with the name and data type of its supported

properties. The current provider types available are "FileProvider", “EmailProvider”, and

“ScriptProvider” (provider type names are case insensitive).

4.6.1.1 Built-in Provider Types

FileProvider

The FileProvider writes the contents of the input result to a file. It supports the following

properties:

EmailProvider

The EmailProvider sends an email to the specified recipients based on the input result set.

It supports the following properties:

Table 25. FileProvider Supported Properties

FileName The name of the file to write to. If not an absolute path, creates a

file relative to current working directory of Data Services

(AUTOPILOT_HOME/localhost).

Default is: FileProviderType.out

Append true/false, indicating whether to append to or overwrite the

current contents of the file.

Default is true.

Line Action Format pattern defining the text to write to the file. See

Formatting for definition of Action Format string.

Default is: ${ActionTime} [${ActionSeverity}] Repo
${RepoID}: ${Condition} found ${RowCount}

results${NewLine}

jKQL User’s Guide Chapter 4: Concepts

JKQLUG11.008 77 © 2019–2024 meshIQ

The EmailProvider implementation is based on Jakarta Mail 1.6. In addition to these

properties, advanced users who are familiar with Jakarta Mail can also directly specify

Jakarta Mail properties (this provider will pass any properties whose name starts with

“mail.” to the underlying implementation directly).

ScriptProvider

The ScriptProvider executes the named script. It supports the following properties:

Table 26. EmailProvider Supported Properties

Transport Name of mail transport protocol to use. One of smtp, pop, imap.

Default is: smtp

ServerHost Host name or IP Address of mail server. There is no default. This

property must be defined.

ServerPort Port number to connect to mail server on. If not defined, or set to 0,

the default port number for the specified Transport is used.

ServerUser User name to use to connect to mail server.

ServerPwd Password for ServerUser. Note that when storing a value for this in

data store (as a result of defining an action), the value is encrypted.

MailFrom Email address to use as sender of email.

MailTo Comma-separated list of email addresses to send email to.

MailCC Comma-separated list of email addresses to cc when sending email.

Subject Action Format pattern defining text to use as subject of message. See

Formatting for definition of Action Format string.

Defaults to: [${ActionSeverity}] Repo ${RepoID}, Action
${ActionName}

Message Action Format pattern defining text to use as contents of email. See

Formatting for definition of Action Format string.

Defaults to: ${ActionTime} [${ActionSeverity}] Repo
${RepoID}, Action

${ActionName}:${NewLine}${NewLine}${ActionResult}

MimeSubtype Mime subtype of message (e.g., “plain”, “html”)

TimeoutMsec Timeout, in milliseconds, to use for connecting and writing to mail

server. If not defined, or set to 0, an infinite timeout is used.

UseTLS Boolean indicating whether to use TLS.

Table 27. ScriptProvider Supported Properties

ScriptName The name of the jKQL Script to execute.

jKQL User’s Guide Chapter 4: Concepts

JKQLUG11.008 78 © 2019–2024 meshIQ

4.6.2 Action
An action defines the concrete values for the properties of a provider type, controlling the

behavior of the action to perform. An action refers to a specific provider type, along with

property settings for the provider type’s implementation.

A simple example is defining an action named “WriteToLog”, referencing the provider type

“FileProvider” and specifying the properties “FileName” to the name of the log file and

“Line” to control the text written to the file. This can be created with the following Upsert:

Upsert Action

 ActionName='WriteToLog',

 ProviderType='FileProvider',

 Active=true,

 Properties=(S:'FileName'='/temp/Actions.log', S:'Line' = 'On

${ActionTime:date} at ${ActionTime:time} Action ${ActionName} found

${RowCount} events. Names: ${EventName[*]}');

4.6.3 Formatting
An Action Format Expression is a string defining a message, with formatted values inserted

into the message at the appropriate places, based on the format patterns. In the action

definition above, the property “Line” is an example of an Action Format Expression. A

format pattern string is delimited by the sequence: ${}, with the text between the braces

specifying the field to format, plus optional formatting directives. The general form of a

format pattern is (parts in parentheses are optional):

${Field([RowNum])(.Key)(:FormatType(:FormatStyle))}

The following values for Field are recognized (case insensitive):

Any other value for Field is assumed to the name of a column in the action result, whose

contents are to be formatted.

It’s possible for an action result to contain more than one row, so when accessing result set

columns, the reference can be qualified with the row number (RowNum), indicating from

which row to extract the value. If RowNum is omitted, then it defaults to 1. If field is one of

Table 28. Formatting – Field Values

ActionTime Time action is being executed

RepoID Repository ID action is running in

ActionName Name of the action

RowCount Number of rows in the action result set

ColumnCount Number of columns in the action result set

ActionResult jKQL result set that action is executing on

ActionProp Value of specified action property

NewLine Line separator

jKQL User’s Guide Chapter 4: Concepts

JKQLUG11.008 79 © 2019–2024 meshIQ

the defined fields above, RowNum is ignored. To get list of all values in the column, RowNum

can be specified as: *.

For values that are maps, the reference can be qualified with a specific map key (Key),

indicating which map key value to extract. By default, each map key,value pair is extracted

(formatted as key:value).

For those familiar with Java, the formatting is based on java.text.MessageFormat, with

some extensions and restrictions (only restriction is that format type choice is not

supported).

FormatType, if specified, indicates what data type to format the value as. The following

format types are supported:

If the value cannot be formatted according to the specified type, the format will simply be

ignored, and it will be formatted with the default format for its data type.

When FormatType is specified, it can be further qualified with FormatStyle, indicating a

specific style to use. The supported values for FormatStyle are based on the value for

FormatType:

Table 29. Supported Format Types

date Format the value as a date

time Format the value as a time of day

datetime Format the value with both date and time

timestamp Synonym for datetime

timeinterval Format the value as a time interval (days, hours, minutes, seconds,

fractional seconds

number Format the value as a number

num Synonym for number

Table 30. Supported Format Styles

date,

time,

datetime

timestamp

Supports date and time format styles, as defined by

java.text.MessageFormat:

• short

• medium

• long

• full

• date/time format pattern, as defined by

java.text.SimpleDateFormat, with the extension that S

indicates microseconds

http://docs.oracle.com/javase/8/docs/api/java/text/MessageFormat.html
http://docs.oracle.com/javase/8/docs/api/java/text/MessageFormat.html
http://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

jKQL User’s Guide Chapter 4: Concepts

JKQLUG11.008 80 © 2019–2024 meshIQ

Some sample format patterns:

As an example, using the line format from the sample action above:

On ${ActionTime:date} at ${ActionTime:time} Action ${ActionName} found

${RowCount} events. Names: ${EventName[*]}

Would produce text similar to the following:

On Aug 30, 2016 at 9:37:31 AM Action EventAction found 2 events. Names:

[SQL.execute, ReadOrder]

Table 30. Supported Format Styles

timeinterval

Supports date and time format styles, as defined by

java.time.format.FormatStyle:

• SHORT

• MEDIUM

• LONG

• FULL

number,

num

Supports numeric format styles, as defined by

java.text.MessageFormat:

• integer

• currency

• percent

• numeric format pattern, as defined by
java.text.DecimalFormat

Table 31. Format Pattern Samples

${ActionName} Name of action being executed

${RowCount} Number of rows in result set action is executing on

${ActionProp.Name} Value of Name property passed to action execution

${Severity[*]:num} List of numeric values of all rows for Severity column from action

result set

${EventCount[1]:number

:#,###}
Value of EventCount column from first row, formatted as a number

with grouping separator

http://docs.oracle.com/javase/8/docs/api/java/time/format/FormatStyle.html
http://docs.oracle.com/javase/8/docs/api/java/text/MessageFormat.html
http://docs.oracle.com/javase/8/docs/api/java/text/DecimalFormat.html

jKQL User’s Guide Chapter 4: Concepts

JKQLUG11.008 81 © 2019–2024 meshIQ

4.7 Views and ViewTemplates

Views and ViewTemplates provide a means of having a predefined query evaluated on a

periodic basis with the latest query result cached for quick retrieval. A ViewTemplate can

be used to define a generic, parameterized query that can be instantiated multiple times.

As we’ll see, use of ViewTemplates is optional, and only necessary when defining Views with

the same general format, but just using different values.

A View represents a named query whose result is periodically evaluated and cached for

quick retrieval. As mentioned earlier, a jKQL View is analogous to an SQL Materialized

View. A View definition either defines the actual jKQL query to execute or instantiates a

ViewTemplate (which defines the presumably parameterized jKQL query) and provides

actual values for the ViewTemplate’s parameters.

Let’s define a simple View:

Upsert View Name='TestView',

 jkql='Get Number Of Events Group By EventName',

 Schedule='3 minutes';

This view will be evaluated every 3 minutes, and the result of the query will be cached.

A View Template can be used to define the general format of a query to be used by one or

more views, with the variable parts represented in the template by parameters and

defining one or more views to assign values to these parameters. As a simple example,

let’s define a template for the above view:

Upsert ViewTemplate TemplateName='TestViewTemplate',

 jkql='Get Number Of ${item} Group By ${field}';

This template has 2 parameters: “item” and “field”. Now we can define Views that

instantiate this template, and assign actual values to these parameters:

Upsert View Name='EventsByName', TemplateName='TestViewTemplate',

 Arguments=('item'='Event', 'field'='EventName'),

 Schedule='0 0,15,30,45 8-17 ? * MON-FRI';

Upsert View Name='ActsByName', TemplateName='TestViewTemplate',

 Arguments=('item'='Activity', 'field'='ActivityName'),

 Schedule='0 0 8-17 ? * MON-FRI';

4.7.1 View Queries
Views are a bit different than other item types when it comes to queries. All other item

types simply have a “definition”, the row in the appropriate database table accessed via the

item’s primary key. A View, however, contains both a definition and a result. So, when

querying a View, which one to return must be specified. For example, to query for the

definition of a View, you MUST include the “Definition” keyword, like:

jKQL User’s Guide Chapter 4: Concepts

JKQLUG11.008 82 © 2019–2024 meshIQ

Get Definition Of View Where …

Any additional clauses in the query (e.g., query fields, filters, groupings, sorting, etc.) apply

to the individual definitions. Leaving out the “Definition Of” returns the latest cached result

for the View and requires that the view name be specified.

Get View 'EventsByName' …

Here, any additional clauses in the query apply to the View’s result.

An additional feature of Views is that they can be evaluated “on-demand”. To support this,

the “Get … Compute …” statement has been extended to indicate that the View’s result

should be computed immediately and returned. The format of this statement is:

Get View 'EventsByName' Compute Result …

To have Views only evaluated on-demand, set the Schedule to NULL.

4.7.2 Schedule
The Schedule field defines how often the View result is computed. It is interpreted as a

string in either of the following formats:

• jKQL time interval expression

• CRON expression

Time interval expressions are described in Time Intervals.

A CRON expression is a string consisting of 6 or 7 fields, each separated by whitespace, as

follows:

<second> <minute> <hour> <day-of-month> <month> <day-of-week> <year>

With <year> being optional. We’re not going to go into the details of how each field can be

defined, as there’s plenty of documentation of CRON expression format. However, what

needs to be mentioned is that the schedule engine has a limitation in that specifying both a

<day-of-week> and a <day-of-month> value is not supported (you must use the ‘?’

character in one of these fields).

4.7.3 Result History
There are 2 main uses of a View:

1. To precompute a potentially lengthy query, so that when result is needed, it’s readily

available (via cache).

2. As a way of periodically aggregating data for use in other calculations.

By default, only the last successfully computed result is saved to cache (use 1, above), and

thus is retrievable via Get View statement. A view can be configured to save the results of

each evaluation to one or more named Datasets. This is done by setting the DatasetName

field to a list of datasets when defining/updating the View definition:

Upsert View Name='TestView',

 jkql='Get Number Of Events Group By EventName',

jKQL User’s Guide Chapter 4: Concepts

JKQLUG11.008 83 © 2019–2024 meshIQ

 Schedule='30 minutes',

 DataSetName= ('dataset1','dataset2');

By default, the Dataset entries are written to the repository where the View definition was

created. You can specify a different repository for the Dataset using the following syntax:

<datasetname>##<repository-id>

For example:

Upsert View Name='TestView',

 jkql='Get Number Of Events Group By EventName',

 Schedule='30 minutes',

 DataSetName= ('dataset1','dataset2##otherrepo$org');

Each column in the View’s result will be a property in each dataset, and each row in View’s

result will be a distinct row in each dataset (with the same timestamp).

One example of using this is to compute hourly aggregates of data, for use later in

reporting or in further calculations. You can define such a View as follows:

Upsert View Name='HourlyEventAggregate',

 jkql=' Get Events Fields Count(eventid), Sum(elapsedtime)

 For Last Hour Group By StartTime Bucketed By Hour',

 Schedule='0 15 * ? * * ',

 DataSetName= ('HourlyEventStats');

This will evaluate the jKQL query at 15 minutes past the hour for every hour of every day.

The query aggregates the values for the Events for the previous hour, creating a bucket for

just that hour. Because of the delay between the actual events and having them persisted

to datastore, running at 15 minutes after the hour allows for all data for the previous hour

to be processed.

4.7.4 Options
View definitions support the following options (in addition to standard Statement Options):

Table 32. Supported View Options

DatasetRetention

Length of time, in seconds, that view history results written to

datasets are retained before they are deleted. This value is limited by

the license quota “AggregateRetention”. If DatasetRetention is not

defined, then licensed limit is used.

MaxRawRows

Maximum number of raw records to retrieve from data store when

executing query. This value is limited by a system defined limit,

currently defaulting to 100,000. If this value is not defined, the

default interactive query raw result limit is used.

jKQL User’s Guide Chapter 4: Concepts

JKQLUG11.008 84 © 2019–2024 meshIQ

4.7.5 Limitations
“Get Info”-type queries (see Get Info) are not supported as the query to execute when

defining a view.

4.8 Statement Chains

A sequence of statements can be chained, which allows the output result from one

statement to be used as input to the next statement in the chain. How the input result is

used depends on the type of statement it is being used with. The result for the entire chain

is the result of the last statement in the chain.

The following statements can be used in a statement chain:

• Get

• Compute

• Invoke

When used in a chain, the individual statements do not support statement options.

Statement options can be specified at the end and apply to every statement in the chain.

The general syntax for a statement chain is:

The “pipe” character, ‘|’ is used to separate the individual statements in the chain.

The first statement is the chain does not have an input result, so it must be a statement

that does not require an input result. Some analytic functions require an input result and

cannot, therefore, be used with a Compute statement as the first statement in the chain, as

described in Compute).

As mentioned previously, how the input result is used depends on the statement using it.

For Compute and Invoke Script, the result is simply passed to the analytic function or

invoke target as part of its input.

For Get, specific input result columns can be referenced in filters to determine the set of

values the filter should match. The syntax for referencing a column in the input result is:

stmt '|' stmt ['|' stmt ...] [stmt_options]

stmt:

 get_stmt

 | compute_stmt

 | invoke_stmt

jKQL User’s Guide Chapter 4: Concepts

JKQLUG11.008 85 © 2019–2024 meshIQ

4.8.1 Examples
The functionality of statement chains can be described using the examples below.

4.8.1.1 Filter based on prior query

These examples show how to use the results of one Get as a filter for the results of another

Get.

Example 1

Get Number Of Events Group By Severity Order by NumberOf desc Range 1,3 | Get

Events where Severity IN %{Severity}

The first query counts the events by Severity and returns the 3 Severities with the highest

event counts. The second query retrieves the events that have one of Severities returned

by the first query. The expression %{Severity} resolves to the list of Severities from the

prior query.

Example 2

Get Events fields Min(StartTime) as 'Min', Max(EndTime) as 'Max'

 where Severity='ERROR'

| Get Snapshots where SnapshotTime between %{Min} and %{Max}

The first query determines the date/time range (minimum time and maximum time)

covering all ERROR events. The second query retrieves all snapshots within that date/time

range. The above query can also be written as follows, using column numbers instead of

names:

Get Events fields Min(StartTime), Max(EndTime) where Severity='ERROR'

| Get Snapshots where SnapshotTime between %1 and %2

result_ref:

 %{column_name}

 | %column_number

column_name:

 string

column_number:

 integer

jKQL User’s Guide Chapter 4: Concepts

JKQLUG11.008 86 © 2019–2024 meshIQ

4.8.1.2 Run Analytic Function on prior query

These examples show how to use the results of a Get to compute the input result for an

analytic function.

Get Event fields Close(ElapsedTime) for this week

 group by StartTime bucketed by hour

| Compute BollingerBands(Close(ElapsedTime))

The first statement computes the closing elapsed time for each hour of the current week

and passes that result to the BollingerBands functions. If the input result only has a single

column, and the analytic function only requires a single argument, the argument for the

analytic function can be left out, as in:

Get Event fields Close(ElapsedTime) for this week

 group by StartTime bucketed by hour

| Compute BollingerBands()

The result returned by BollingerBands can be sorted and/or filtered:

Get Event fields Close(ElapsedTime) for this week

 group by StartTime bucketed by hour

| Compute BollingerBands() sort by 'Low'

Get Event fields Close(ElapsedTime) for this week

 group by StartTime bucketed by hour

| Compute BollingerBands() where 'High' > 100

In the following statement, we are going to first compute some aggregations and then use

those as inputs for further calculations. This example will also demonstrate some features

of the ForEach function, like the ability to define aliases for the output result:

Get Snapshot fields Sum(OrderAmount) as OrderTotal,

 Sum(Taxes) as TaxesTotal,

 Sum(ProductCount) as ProdCount

 group by SnapshotName, Category

| Compute ForEach(SnapshotName, Category, OrderTotal/ProdCount as AvgOrder,

 TaxesTotal/ProdCount as AvgTaxes)

In this example, we are first computing the total for all orders, the total taxes collected, and

the total number of products sold for each distinct Snapshot name and category. This

aggregation result is then passed to the ForEach function, which will compute the

argument expressions for each row from aggregation and return a new result based on the

arguments. Notice that the group columns are repeated in the ForEach argument list so

that they are simply transferred to the output result. The additional columns in the

ForEach result contain the average order amount and average taxes collected.

jKQL User’s Guide Chapter 4: Concepts

JKQLUG11.008 87 © 2019–2024 meshIQ

4.8.1.3 Invoke Action, jKQL Script in Chain

We can pass the results of prior statement(s) to an Action or jKQL Script, as follows:

Get Event fields Close(ElapsedTime) for this week

 group by StartTime bucketed by hour

| Compute BollingerBands()

| Invoke Script 'MyScript'

4.8.1.4 Query for items based on other items

A statement chain can be used to query for item types based on the properties of another

item type. For example, you can query for a set of activities based on the properties of

events they contain. Consider the following:

Get Events fields ActivityID where SetName='Shipment'

| Get Activities where ActivityID in %{ActivityID}

The first query in the chain lists all activity IDs for events that belong to Set “Shipment”, and

the second query in the chain gets all the activity definitions for those activity IDs, so the

query chain gets all activities containing an event in the set “Shipment”.

4.8.2 Limitations
“Get Info”-type queries (see Get Info) are not supported in statement chains.

JKQLUG11.008 88 © 2019–2024 meshIQ

Chapter 5: Access Control

Access Control defines what data users can view or modify.

5.1 Levels

jKQL supports 3 levels of access control:

• Ownership – single entity that is marked as the owner for an item instance.

• Modify – set of entities that can alter and delete an item.

• View – set of entities that can view an item but cannot make any changes to it.

The above list is defined in decreasing precedence. Having access at any level implies

having all access levels below it. For example, having Modify access implies having View

access. When removing access for a particular level, access is removed from all levels

about it. For example, revoking View access revokes Modify access.

5.2 Effective Roles

The Effective Role that a user has to an item is derived from the access control levels given

to the user directly and to any of the teams the user is a member of, formed by taking the

union of all the access control levels for the item in question. As a result, if user or ANY

team user has Modify access to item, the user’s Effective Role is Modify. The Effective Role

is computed behind the scenes when accessing an item. It can be requested in a query by

including the field EffectiveRole in the list of fields (must be explicitly included).

5.3 Entities

An access control entity is one of the following:

• A single User

• A Team – all members of the team have the specific access control level

• An Organization – all members of the organization have the specified access control

level

5.4 Items

Access control can be defined for the following items:

• Organizations

• Teams

• Repositories

• Dictionaries

• Sets

• Actions

• InputDataRules

• View Templates

• Views

jKQL User’s Guide Chapter 5: Access Control

JKQLUG11.008 89 © 2019–2024 meshIQ

• MLModels

• Scripts

Access control is defined using the Grant and Revoke statements. See Grant and Revoke for

details.

5.5 Membership

Membership is defined for Organizations and Teams as those entities that have View

access to the Organization or Team.

5.6 Administrators

Administrators (or “Admins”) of an item are those entities that have Modify access to the

item.

5.7 Operation

Access control operates as follows:

• Organizations

o Modify access – Users that have Modify access, or are members of Teams

that have Modify access have full control over the Organization, which

includes the ability to:

▪ Modify Organization definition itself, including access control for the

organization

▪ Ability to create, alter, delete Users, Repositories, and AccessTokens

that are part of the organization

▪ Ability to create, alter, delete any item in any Repository that is part of

the organization.

o View access – Users that have View access, or are members of Teams that

have View access are considered members of the Organization, and as a

result can:

▪ View the Organization definition itself

▪ View the users that are members of the Organization

▪ Are granted any access control assigned to the Organization

• Teams

o Modify access – Users that have Modify access, or are members of Teams

that have Modify access can alter and delete the team record, including

access control for the team

o View access – Users that have View access, or are members of Teams that

have View access are considered members of the Team, and as a result can:

▪ View the Team definition itself

• Repositories

jKQL User’s Guide Chapter 5: Access Control

JKQLUG11.008 90 © 2019–2024 meshIQ

o Modify access – Users that have Modify access, or are members of Teams or

Organizations that have Modify access can create, alter, and delete items in

the repository

o View access – Users that have View access, or are members of Teams or

Organizations that have View access can view data and definitions in the

repository, but cannot make any changes to existing items:

For all other items that support access control:

• Modify access allows the item definition to be updated and deleted

• View access allows the item to be viewed/accessed only

5.8 Inquiries

In order to see what access is available to the currently logged-in user, include the

EffectiveRole field in the query field list of a Get statement. For example:

Get Sets Fields SetName, EffectiveRole

In the result, this column will be filled in with the access level the current user has to each

item in the result.

Administrators can query for the access level that other entities have to various items. This

is done via a special form of the Get statement (see Get for full syntax). For example:

To see what Repositories User “user1” can access:

Get Repositories Fields RepositoryId Viewable By User 'user1'

To see what Sets Team “team1”, that’s defined in Organization “org1”, can modify:

Get Sets Fields SetName Modifiable By Team 'team1' In Organization

'org1'

The In Organization clause is only used when querying for the access level of a Team

(and the keyword Organization can be left out, as it is implied.

The results will include the EffectiveRole field, to aid in processing the results (since having

Modify access implies having View access, so when querying for View access, it may be

helpful to know which ones the user can actually modify.

JKQLUG11.008 91 © 2019–2024 meshIQ

Chapter 6: Administration

6.1 Data Model

The meshIQ Track Administration data model consists of the following items:

• Users – A registered meshIQ Track User

• Organization – An entity that consists of multiple Users, Teams, and Repositories

• Team – A set of users that have access to one or more Repositories

• Repository – A named set of data items to which access is controlled as a group

• Access Token – A key that is used to stream data to a specific Repository

• Volume – represents an external data store, currently used to define connection

points to additional data store clusters

All administration items use the same access control levels used by other item types.

6.2 jKQL Fields

6.2.1 Admin Item Names
Admin item names are STRINGs consisting of the following valid characters.

6.2.2 Access Token Options
Access Token options control what actions the tokens can be used for, as follows:

Table 33. Valid Characters for Admin Item Names

Users 0-9a-zA-Z._@-

Organizations 0-9a-zA-Z._@-

Teams 0-9a-zA-Z._@-

Repositories 0-9a-zA-Z._@-

AccessTokens 0-9a-zA-Z._@-

Volumes 0-9a-zA-Z._@-

Table 34. Tokens Actions

Stream
Token can be used for streaming Activities, Events, Snapshots,

and Datasets.

jKQL User’s Guide Chapter 6: Administration

JKQLUG11.008 92 © 2019–2024 meshIQ

Each option is a string that is interpreted as a list of item types that the option can be

applied to. A string consisting of a single asterisk (“*”) can be used to indicate that option

applies to ALL item types. Each option that should be applied to the token MUST be

specified. In other words, if an option is NOT defined for the token, then the token cannot

be used for the operations associated with that option. For backwards compatibility, the

one exception to this is that if the token does not have any options defined at all, then the

token is assumed to be a streaming token and can only be used for streaming.

Table 34. Tokens Actions

Query

Token can be used for querying data, thus allowing the

following jKQL verbs to be run:

• COMPARE

• FIND

• GET

• SUBSCRIBE

• UNSUBSCRIBE

Modify

Token can be used for creating and modifying data, thus

allowing the following jKQL verbs to be run:

• UPSERT

• UPDATE

• INSERT

• DISABLE

• ENABLE

• GRANT

• REVOKE

• RESET

Delete

Token can be used for creating and modifying data, thus

allowing the following jKQL verbs to be run:

• DELETE

• PURGE

Admin

Token can be used for creating, modifying, and deleting

administrative definitions, thus allowing the following jKQL

verbs to be run:

• CREATE

• ALTER

• DROP

Execute

Token can be used for executing Actions and jKQL Scripts,

thus allowing the following jKQL verbs to be run:

• INVOKE

• TRAIN

jKQL User’s Guide Chapter 6: Administration

JKQLUG11.008 93 © 2019–2024 meshIQ

6.2.3 Repository Options

Repository options control what analysis actions are performed for a repository. All

repository options are flags, with a value of either true or false, with true being the

default if an option is not specified. The supported options are:

6.2.4 Access Token Quotas
Access Token allow for restrictions on the data that is accessible via the token, as follows:

6.3 Admin Statement Syntax

To query for Administration items, use the Get statement. To manipulate administration

items, use the following statements.

6.3.1 Common Elements

adm_item_type:

 USER[S]

Table 35. Repository Options

Stitching
Indicates whether Events and Activities are stitched together

based on the specified correlators.

Relatives
Indicates whether Relatives (relationships) between events

are created.

Index
Indicates whether streamed data is written to persistent data

store (i.e., “hot” storage).

Archive Indicates whether data is written cold storage.

Sources
Indicates whether entries for distinct Event Sources are

created.

Resources
Indicates whether entries for distinct Event Resources are

created.

Table 36. Tokens Quotas

MaxRequests

Maximum number of non-streaming requests that can be sent

using this token. When this number of requests is exceeded,

any additional requests will be rejected. Value can be reset.

jKQL User’s Guide Chapter 6: Administration

JKQLUG11.008 94 © 2019–2024 meshIQ

 | ORGANIZATION[S]

 | TEAM[S]

 | REPOSITORY | REPOSITORIES

 | ACCESSTOKEN[S]

 | VOLUME[S]

6.3.2 Create
The Create statement is used for creating new administration items. The Create statement

has the following syntax:

CREATE adm_item_type item_name

 [field_value_expr [, field_value_expr ...]]

Examples

To create a new repository with a custom set of Quotas:

Create Repository 'MyRepo' OrganizationName='MyOrg',

Quota=('Retention'=604800, 'AggregateRetention'=2419200)

6.3.3 Alter
The Alter statement is used for changing existing administration items. The Alter

statement has the following syntax:

ALTER adm_item_type item_name

 field_value_expr [, field_value_expr ...]

Examples

To change an existing repository to define a custom Retention value:

Alter Repository 'MyRepo' OrganizationName='MyOrg',

Quota+=('Retention'=604800)

Note the use of “+=” to indicate the Retention should be added to the set of Quotas already

defined for the repository (see Insert, Update, Upsert for details on setting item fields). See

Quotas for valid set of Quotas.

6.3.4 Drop
The Drop statement is used for removing administration items. The Drop statement has

the following syntax:

jKQL User’s Guide Chapter 6: Administration

JKQLUG11.008 95 © 2019–2024 meshIQ

DROP adm_item_type item_name

 [field_value_expr ...]

Dropping an item removes references to it from other items (e.g., access control lists).

Note that the item being dropped must not be the owner of any other item.

Examples

To drop team “Developers” from organization “base”:

Drop Team ' Developers' OrganizationName='base'

6.4 Volumes

Volumes are used to define additional data store clusters. This allows information for

different repositories to be stored in different data store clusters, allowing these clusters to

be configured differently based on the characteristics of the data stored in each repository.

For example, repositories that have a high volume and/or high rate of data could be in a

16-node cluster, while others with less data could be stored on a smaller 4-node cluster.

By default, there is one “main” or “default” volume, which contains all the administrative,

reference, and non-repository-specific data. It will also contain all the repository-specific

data, unless those repositories are defined to use a specific volume.

The first step in using a volume is to actually create the physical volume(s) (i.e., clusters),

which is outside the scope of this document. Once these physical volumes are defined, you

use the administration jKQL statements to define it. For example, to define a new volume

that uses a SolrCloud cluster at a particular location, you would use the Create statement

to define it:

Create Volume 'LargeCluster'

 Description='16-node Solr Cluster',

 Url='11.22.33.44:2181/Nastel'

This example defines a Volume representing a Solr cluster, reachable via the Zookeeper

instance running at 11.22.33.44:2181, using Zookeeper Chroot of “/Nastel”. From this

definition, we can derive the necessary Solr Node for applying upgrades. If the volume

requires authentication to connect to it, then set the VolumeUser and VolumePassword

fields to the appropriate credentials.

However, for Solr Volumes, if the URL is a list of the Solr node(s), the following properties

must be defined in order for upgrades to be properly applied to the cluster:

• SOLRHOST – The host name or IP Address of any one of the Solr nodes in the Solr

cluster. This one is optional, as we can derive it from Url field.

jKQL User’s Guide Chapter 6: Administration

JKQLUG11.008 96 © 2019–2024 meshIQ

• SOLRPORT – The port number for the Solr node specified in SOLRHOST (if omitted,

derived from Url, defaulting to 8983).

• ZKHOST – The host name or IP Address of any one of the Zookeeper nodes being

used by this Solr cluster. This is mandatory.

• ZKPORT – The port number for the Zookeeper node specified in ZKHOST (if omitted,

defaults to 2181).

• ZKROOT – The Zookeeper Chroot location to store the Solr configuration within

Zookeeper (if omitted, defaults to Zookeeper’s root folder).

An example of creating a volume defining these properties is:

Create Volume 'LargeCluster'

 Description='16-node Solr Cluster',

 Url='http://11.11.11.11:8983',

 Properties=('SOLRHOST'='11.11.11.11',

 'SOLRPORT'=8983,

 'ZKHOST'='11.22.33.44',

 'ZKPORT'=2181,

 'ZKROOT'='/Nastel')

Now that the Volume is defined, you have to create/alter repository definition(s) to indicate

that they should use this cluster, for example:

Create Repository 'LargeRepo', OrganizationName='MyOrg',

VolumeName='LargeCluster'

6.5 Access Tokens

Access tokens are used to direct streamed data to the appropriate repository and for

granting access to this data. Access tokens can be perpetual (valid until they are explicitly

deleted) or can be set to expire after a specified period of time.

There are two general types of tokens:

• Streaming – for writing data to appropriate repository

• Request – for providing access to the data

To create a streaming token, define the appropriate option and associate the token with a

single repository. When actually streaming the data, include the token (not the token ID,

which is just the token’s unique identifier in the database) when establishing the

connection. An example of creating a streaming token:

jKQL User’s Guide Chapter 6: Administration

JKQLUG11.008 97 © 2019–2024 meshIQ

Create AccessToken 'StreamTokenID' Token='StreamToken',

RepositoryID='MyRepo$MyOrg', Options=('Stream'='*')

The option “Stream” indicates that it is a streaming token. The value of the option is a list

of item types that can be streamed. The value '*' indicates that any item type can be

streamed. To restrict the list of items that can be streamed, you enumerate the specific

item types that can be streamed. For example, to enable streaming of only Events and

Snapshots, define Options field as:

Options=('Stream'='EVENT,SNAPSHOT')

When using this token for streaming, you would set the streaming token property value to

StreamToken, NOT StreamTokenID.

To create a query token, define the appropriate option and associate the token with one or

more repositories. A query token must also have a user associated with it, which is used to

define the access control to apply to this token. An example of creating an expiring query

token:

Create AccessToken 'QueryTokenID' Token='QueryToken',

RepositoryID='MyRepo$MyOrg',

Options=('Query'='ACTIVITY,EVENT,SNAPSHOT') , UserName='myuser',
DateFilter='last 3 days', TTL=30 days

This will create an access token that allows only Activities, Events, and Snapshots to be

queried, limiting the data to the last 3 days, restricting the result to data visible to user

myuser. The token is set to expire in 30 days, after which it will no longer be accepted.

Notice that tokens have both a Token and a TokenId field. When using “Create/Alter/Drop

AccessToken”, the label after “AccessToken” is interpreted as the TokenId. Note that the

Token and the TokenId must be globally unique, meaning that a TokenId not only must be

unique amongst all TokenIds, but also must be unique among all Tokens as well. For

security reasons, it is not recommended to set both the Token and TokenID fields to the

same value. Access tokens support specific subsets of the license quotas. The quota for

each specific subset applies to requests made with the applicable access token option (for

example, a streaming access token or a query access token). An access token quota

overrides (but cannot exceed) the license quotas for the organization.

Streaming access tokens support the following quota:

Retention – Defines the length of time, in seconds, that data is kept. When the

Retention time expires, the data is deleted from the database.

jKQL User’s Guide Chapter 6: Administration

JKQLUG11.008 98 © 2019–2024 meshIQ

Query access tokens also support a subset of license quotas, plus an addition quota

specific to query tokens (MaxRequests, described below). The support query access token

quotas are:

RateLimitBytes – Defines the maximum streaming rate, in bytes per second, which

data can be sent to the system. If data comes in at a higher rate, the defined

OveragePolicy will be applied to the connection.

RateLimitCount – Defines the maximum streaming rate, in messages per

second, which data can be sent to the system. If data comes in at a higher rate, the

defined OveragePolicy will be applied to the connection.

OveragePolicy – Defines what action is taken when the streaming rate exceeds

either RateLimitBytes or RateLimitCount:

THROTTLE (0) – the connection is throttled so that the processing rate on the

connection is the minimum of RateLimitBytes and RateLimitCount

DROP (1) – messages are dropped until the streaming rate slows down to the

limits defined by RateLimitBytes and RateLimitCount

ALLOW (2) – no action is taken, and the streaming is allowed to continue at

the current rate

For the above quotas, if they are not specified, the values are inherited from the owning

Organization.

In addition to these license-controlled quotas, AccessTokens also have an additional quota,

MaxRequests. This defines how many non-streaming requests can be issued with this

token, after which all requests using the token are rejected. The value can be reset at any

point, which would allow additional requests to be accepted. If this value is not defined,

then there is no limit on the number of requests that can be issued.

An example of creating a query token with limits specified:

Create AccessToken 'd4feabbc-d49b-11e9-bbf0-1866da403e8a',

 Token='QueryToken', RepositoryID='MyRepo$MyOrg',

 Options=('Query'='ACTIVITY,EVENT,SNAPSHOT'),

 UserName='myuser', DateFilter='last 3 days', TTL=30 days,

Quota=('MaxRequests'=10000,'OveragePolicy'=1,'RateLimitBytes'=-

1,'RateLimitCount'=10)

A quota value < 0 indicates that there is no limit.

JKQLUG11.008 99 © 2019–2024 meshIQ

Chapter 7: Licensing

Licensing controls which features of the system are available to use, as well as defining

limits on what those features can do.

7.1 Data Model

The licensing model is a hierarchical one.

At the base level is the Master license. It defines the overall features that are available, and

the quotas that affect the entire installation. It also defines the limits that other licenses

can have. Any other licenses cannot exceed the limits defined in the Master license:

• Features that are not enabled in Master license cannot be enabled in any other

license

• Quota limits cannot exceed those in Master license

In addition to the Master license is the Default license, which defines the default limits of

every organization, if the organization record does have an organization-specific license.

The Master and Default licenses are stored in the Licenses reference item. The license for

a specific organization is stored in the License field on the organization’s record.

7.1.1 Features
The Features item defined the complete set of licensable components. This set is stored in

the Features reference item. Each license defines the set of features that are enabled. The

available features are:

7.1.2 Effective License
The Effective License, that is, the effective license limits applied to an organization is

determined as follows:

• If a license is defined in the organization record, it is used

Table 37. Available Features

Sets Allows grouping of Activities and Events based on defined criteria

InputDataRules
Allows computing built-in or custom fields for streamed data based on

specific criteria

ColdStore
Allows saving data and definitions to external data store for archiving and

data recovery

Branding
Allows customizing appearance, logo, landing page, web link and other

organization elements

DataImport Allows importing data into the repository from external file sources

Views Allows defining precomputed, cached query results

MachineLearning Allows use of advanced Machine Learning prediction and analysis facilities

Volumes Allows distribution of repository data across distinct clusters

jKQL User’s Guide Chapter 7: Licensing

JKQLUG11.008 100 © 2019–2024 meshIQ

• Otherwise, if there is a Default license, it is used

• Otherwise, Master license is used

7.2 jKQL Fields

There are some license-related fields whose values are jKQL expressions or that follow a

specific format.

7.2.1 License
The License field is a MAP field, with the keys representing a license attribute, and the value

containing the limit of that attribute.

7.2.2 Features
The Features field is a string-list of enabled features, which is a subset of the full feature set

in Features item.

7.2.3 Quotas
The Quotas field defined the various licensable limits. It is a MAP, with the keys containing

the quota’s label, and the value containing the limit of that quota. The supported quotas

are:

Table 38. Supported Quotas

DataPoints

Defines the total number of data points (total number of Activities,

Events, and Snapshots) that can be stored in the data store at any one

time (based on Retention).

Retention
Defines the length of time, in seconds, that data is kept. When the

Retention time expires, the data is deleted from the database.

AggregateRetention

Defines the length of time, in seconds, that aggregated data stored in

Datasets table as the result of View evaluations is kept, after which it is

deleted from database.

MaxMsgSize

Defines the maximum number of bytes that is stored in the Message

field of Events (generally represents the payload of the data involved in

the Event).

RateLimitBytes

Defines the maximum streaming rate, in bytes per second, which data

can be sent to the system. If data comes in at a higher rate, the defined

OveragePolicy will be applied to the connection.

RateLimitCount

Defines the maximum streaming rate, in messages per second, which

data can be sent to the system. If data comes in at a higher rate, the

defined OveragePolicy will be applied to the connection.

OveragePolicy
Defines what action is taken when the streaming rate exceeds either

RateLimitBytes or RateLimitCount:

jKQL User’s Guide Chapter 7: Licensing

JKQLUG11.008 101 © 2019–2024 meshIQ

7.2.4 Effective Values
When applying license limits, the effective limits are computed. In addition to the defined

license limits, system administrators can specify more restrictive limits to organizations and

repositories without having to necessarily load organization-specific licenses (repository-

level licenses are not supported. Both Organization and Repository definitions can define

Features and Quota that should be used instead of the licensed levels. Of course, these

cannot exceed the licensed levels (for a repository, these values cannot exceed those of the

organization it belongs to).

For Features, it’s important to note the difference between a NULL value and an empty list:

• If Features value on a record is NULL, then it’s assumed that none is defined, and

the next level in the EffectiveFeatures calculation is checked

• If the Features value on the record is the empty set, then this is the feature set

applied, which implies that NO features are enabled

The EffectiveFeatures are computed as follows:

Table 38. Supported Quotas

THROTTLE – the connection is throttled so that the processing rate on

the connection is the minimum of RateLimitBytes and RateLimitCount

DROP – messages are dropped until the streaming rate slows down to

the limits defined by RateLimitBytes and RateLimitCount

ALLOW – no action is taken, and the streaming is allowed to continue at

the current rate

MaxUsers

The maximum number of Users that can be defined in the entire system

(for Master License) or in a specific organization (for Default or

organization-specific license).

MaxTeams

The maximum number of Teams that can be defined in the entire system

(for Master License) or in a specific organization (for Default or

organization-specific license)

MaxRepositories

The maximum number of Repositories that can be defined in the entire

system (for Master License) or in a specific organization (for Default or

organization-specific license).

MaxTokens

The maximum number of Access Tokens that can be defined in the entire

system (for Master License) or in a specific organization (for Default or

organization-specific license).

MaxOrganizations
The maximum number of Organizations that can be defined in the entire

system (has no effect for Default or organization-specific license).

StreamBytesPerDay
Total number of bytes that can be streamed in per calendar day. This is

computed based on the total length of the streamed JSON message.

StreamMsgsPerDay
Total number of individual messages that can be streamed per calendar

day.

jKQL User’s Guide Chapter 7: Licensing

JKQLUG11.008 102 © 2019–2024 meshIQ

• Organization

o If organization record has a feature set defined (e.g., non-NULL), this represents

the set of features available to this organization

o Otherwise, if an organization has an organization-specific license, then the

feature set defined in the license is used.

o Otherwise, if there is a Default license defined, then it’s feature set is used

o Otherwise, feature set is taken from Master license

• Repository

o Simply inherited from the organization the repository belongs to

The EffectiveQuotas are computed as follows:

• Organization

o Get quotas from the EffectiveLicense for the organization

o Replace any quotas with those defined on the organization record itself

• Repository

o Get EffectiveQuotas for the organization the repository belongs to

o Replace any quotas with those defined on the repository record itself

jKQL User’s Guide Chapter 7: Licensing

JKQLUG11.008 103 © 2019–2024 meshIQ

7.3 Load Statement Syntax

Licenses are loaded using the Load jKQL statement.

LOAD [license_name] LICENSE

 [FOR ORGANIZATION org_name]

 FROM location

license_name:

 Master

 | Default

org_name:

 string

location:

 string

See Common Elements for additional sub-clause definitions.

The license location can be either a simple file path or a generic URI. Note there is no

requirement on the name of the license file.

To load Master license:

Load Master License From '/home/me/master.lic'

To load Default license:

Load Default License From '/home/me/default.lic'

To load a license for a specific organization:

Load License For Organization 'myorg' From '/home/me/org.lic'

One exception to this is loading the original Master license, since the system will not start

without a Master license. This can be loaded using the command line tool, as follows:

jkool-cmd -loadlic -f:/home/me/master.lic –C:dburl -U:Administrator -

P:pwd

Loading the Master or Default licenses must be done using administration user

(Administrator, as of version 1.3). Loading license for organization requires AdminRole

access to organization.

JKQLUG11.008 104 © 2019–2024 meshIQ

Chapter 8: Extending jKQL

There are several parts of the jKQL language that can be extended by adding user-defined

elements. These external elements are defined via configuration file(s). The definitions are

loaded into standard data store and then loaded when the system starts. Multiple

extensions can be defined in the same configuration files, or they can be defined in

individual files. The only requirement is that an extension must be defined before it can be

referenced by other extensions.

The general structure of a jKQL extension configuration file is:

<?xml version="1.0" encoding="UTF-8" ?>

 <ext-data-source-type>

 </ext-data-source-type>

 <ext-provider-type>

 </ext-provider-type>

</ext-config>

8.1 External Data Source

An external data source allows for data from a source other than the standard data store

to be manipulated via jKQL. What operations can be performed on this data is dependent

on the implementation of the data source.

The way that the data is exposed is by defining custom item types, extending the set of

built-in items (e.g., Events, Activities, etc.). These items can then be manipulated using the

standard jKQL verbs, just like the built-in types.

8.1.1 External Data Source Definition
Creating an external data source starts with its definition, which consists of the following

attributes:

Table 39. External Data Source Attributes

name
Defines the name of the external data source. Mainly used to relate other

elements that are part of the external data source.

implclass

The full name of the Java class that implements the external data source.

This class must implement the Java interface:

com.nastel.jkool.db.store.external.ExtDataSource

ordbase
Defines the base value to assign to the enumeration object created to

represent the items and fields defined in this data store. This value must

jKQL User’s Guide Chapter 8: Extending jKQL

JKQLUG11.008 105 © 2019–2024 meshIQ

The sections below describe the components of an external data source. It is

recommended that the order of the items, as listed in the configuration file, not be

changed, since each of these items is assigned a unique ordinal number based on their

order in the configuration. If adding new fields or items, add them to the end of the

corresponding section.

8.1.2 External Field Types
The first elements to define for an external data source are the set of fields that can be

used by any of the items supported by the data source. Values that are used in multiple

items must use the same field type and are assumed to have the same data type (fields

that are behaving like SQL foreign keys). In this context, data type means the type of

value(s) stored in the field. The field can be a single value in one item and a list of values in

another item, but the data type of the values is assumed to be the same.

As mentioned above, it is highly recommended that the order of the fields in the

configuration not change, as this will change the assigned ordinal value of the field.

The definition of an external field consists of the following attributes:

be >= 1000 and be a multiple of 1000. This value must also be unique

across all external data source definitions.

Table 40. External Field Attributes

name

Defines the name of the field. Think of this as a Java enumeration constant.

The name is usually defined in all upper case (will be converted to upper

case when processing configuration), and must be unique among all field

types, including built-in and other externally defined ones.

label

This is the value used in jKQL to represent this field. The label is usually

defined in CamelCase (if label contains underscores, it will be converted to

CamelCase, using underscores as word separators, and removing the

underscores), and must also be unique among all field types, including

built-in and other externally defined ones. The CamelCase is for readability.

Labels are case-insensitive when using them in jKQL, and when testing for

uniqueness.

datatype

Defines the data type for the values of this field. It must be one of the

defined jKQL data types (see Data Types). This is the raw data type of the

values, even if instances of this field will be lists, where this then defines the

type of values in the list. Whether or not the field is a list of values is

defined when indicating that this field is used by a specific item (see External

Item Fields).

enumclass

Enumeration fields (datatype = “ENUM”) name the Java class that defines

the enumeration members. This class must be either a Java enum or a

JKEnum (com.nastel.jkool.core.JKEnum), which is a built-in jKQL class that

defines an implementation of enumerations that can be extended at

jKQL User’s Guide Chapter 8: Extending jKQL

JKQLUG11.008 106 © 2019–2024 meshIQ

8.1.3 External Item Types
After defining the complete set of external fields, the actual item types that the data source

supports are then defined. Item types have the following attributes:

8.1.4 External Item Fields
After any custom fields and the custom items are defined, it’s time to define what fields

each custom item supports. This can be a combination of built-in field types and/or

custom field types. When using built-in fields, you have to use the label, data type, and, for

enum fields, the defined set of enums. If this does not work for your custom items, then

you have to define custom fields.

To define what fields an external item type supports, you include them in the fields

specification of the item type definition. The item field definition has the following

attributes:

runtime. If this class is a Java enum, it will be converted internally to a

JKEnum.

Table 41. External Item Attributes

name

Defines the name of the item. Think of this as a Java enumeration

constant. The name is usually defined in all upper case (will be converted

to upper case when processing configuration), and must be unique

among all item types, including built-in and other externally defined ones.

label

This is the value used in jKQL to represent this item. The label is usually

defined in CamelCase (if label contains underscores, it will be converted

to CamelCase, using underscores as word separators, and removing the

underscores), and must also be unique among all item types, including

built-in and other externally defined ones. The CamelCase is for

readability. Labels are case-insensitive when using them in jKQL, and

when testing for uniqueness.

applydfltdatefilter
true/false flag indicating whether queries for this item should implicitly

include the default date filter for the current user’s session (see 4.1).

Table 42. External Item Field Attributes

name

References the name of the field to include in this item type. This is either

the name of a built-in field type (as defined in

com.nastel.jkool.jkql.FieldType), or the name of a previously defined

external field, as defined in External Field Types.

iskey

true/false flag indicating whether this field is a key field used to uniquely

identify an instance of this item type. There can be multiple key fields if a

set of fields together uniquely identifies an instance (i.e., a compound key).

jKQL User’s Guide Chapter 8: Extending jKQL

JKQLUG11.008 107 © 2019–2024 meshIQ

The “is” properties can be omitted. Omitted properties default to false.

8.1.5 Synonyms
As specified above, Items and Fields have both a name and a label, each of which can be

used to reference them in jKQL. In addition to the names and labels, you can define

additional labels, or synonyms, which can be used to identify the fields and items. These

are case-insensitive and must be unique across all item synonyms (for external items) or

across all field synonyms (for external fields), both built-in and externally defined.

A synonym definition has the following attributes:

Table 42. External Item Field Attributes

isid

true/false flag indicating whether this field is the ID field for this item. In

most cases, if the item has such a field, it will be the unique ID for this item,

but there is no requirement that this be the case. This is used when using

the generic field “ID” in a jKQL statement to translate it to the specific field

for the item. There should only be one field for each item type with this flag

set to true.

isname

true/false flag indicating whether this field is the Name field for this item.

This is used when using the generic field “Name” in a jKQL statement to

translate it to the specific field for the item. There should only be one field

for each item type with this flag set to true.

istype

true/false flag indicating whether this field is the Type field for this item.

This is used when using the generic field “Type” in a jKQL statement to

translate it to the specific field for the item. There should only be one field

for each item type with this flag set to true.

islist
true/false flag indicating whether the value for this field in this item type is a

list of values.

isdfltdate

true/false flag indicating whether this field should be used when doing

date-based queries with no specific field indicated. For example, for a

query of the form: Get items for today, the values of this field are used to

determine which items are included in result.

isquerydflt

true/false flag indicating whether this field is included when issuing queries

with no fields specified. For example, for a query of the form: Get items,

which does not have a Fields clause, only the fields that have this flag set to

true are included in the result. Any number of fields (or all fields) can have

this flag set to true. If no fields have this set to true, then all fields are

included in queries that do not specify a Fields clause.

Table 43. External Synonym Attributes

name

The name of the synonym. It is used as a synonym for the item or field

definition in which it’s defined. This must be globally unique for all

components (items or fields) of the type in which it’s defined.

jKQL User’s Guide Chapter 8: Extending jKQL

JKQLUG11.008 108 © 2019–2024 meshIQ

8.1.6 Configuration
As indicated earlier, these definitions are defined in a configuration file. The general

format of the external data source configuration is:

<ext-data-source-type name="" impclass="" ordbase="">

 <fields>

 <field name="" label="" datatype="" enumclass="">

 <synonyms>

 <synonym name=""/>

 </synonyms>

 </field>

 </fields>

 <items>

 <item name="" label="">

 <fields>

 <field name="" iskey="" isid="" isname="" istype=""

 islist="" isdfltdate="" isquerydflt=""/>

 </fields>

 <synonyms>

 <synonym name=""/>

 </synonyms>

 </item>

 </items>

</ext-data-source-type>

8.1.7 Example
<?xml version="1.0" encoding="UTF-8" ?>

<ext-data-source-type name="Test"

impclass="com.nastel.jkool.db.store.external.TestExtDataSrc"

 ordbase="1000">

 <fields>

jKQL User’s Guide Chapter 8: Extending jKQL

JKQLUG11.008 109 © 2019–2024 meshIQ

 <field name="ROOT_NAME" label="RootNodeName"

datatype="STRING">

 <synonyms>

 <synonym name="rname"/>

 </synonyms>

 </field>

 <field name="LEAF_NAME" label="LeafNodeName"

datatype="STRING">

 <synonyms>

 <synonym name="lname"/>

 </synonyms>

 </field>

 <field name="NODE_TYPE" label="NodeType" datatype="ENUM"

 enumclass="com.myco.jkql.NodeType">

 <synonyms>

 <synonym name="ntype"/>

 </synonyms>

 </field>

 </fields>

 <items>

 <item name="ROOT_ITEM" label="RootItem">

 <fields>

 <field name="ROOT_NAME" iskey="true" isname="true"

 isquerydflt="true"/>

 <field name="NODE_TYPE" isquerydflt="true"/>

 </fields>

 <synonyms>

 <synonym name="RootNode"/>

 </synonyms>

 </item>

 <item name="LEAF_ITEM" label="LeafItem">

 <fields>

 <field name="LEAF_NAME" iskey="true" isname="true"

 isquerydflt="true"/>

 <field name="ROOT_NAME" islist="true"

isquerydflt="true"/>

 <field name="NODE_TYPE" isquerydflt="true"/>

jKQL User’s Guide Chapter 8: Extending jKQL

JKQLUG11.008 110 © 2019–2024 meshIQ

 </fields>

 <synonyms>

 <synonym name="LeafNode"/>

 </synonyms>

 </item>

 </items>

</ext-data-source-type>

8.2 External Action Provider Types

As described in Actions, action provider types are implementations of actions that can be

run on demand using the Invoke verb. In addition to the built-in provider types, externally

defined implementations can be defined to extend the set of available provider types.

8.2.1 Provider Type Definition
An external provider type definition has the following attributes:

8.2.2 Provider Type Properties
A provider type can support one or more properties, which are values that can control the

behavior of the provider type. A provider type property definition contains the following

attributes:

Table 44. External Provider Type Attributes

name
Defines the name of the provider type. This name must be unique among

all provider types, including built-in and other externally defined ones.

implclass

The full name of the Java class that implements the provider type. This

class must implement the Java interface:

com.nastel.jkool.jkql.action.JKQLProviderType

Table 45. Provider Type Property Attributes

name Defines the name of the property.

datatype

Defines the data type for the values of this property. It must be one of the

following jKQL data types:

• STRING

• INTEGER

• DECIMAL

• BOOLEAN

• TIMESTAMP

• TIMEINTERVAL

jKQL User’s Guide Chapter 8: Extending jKQL

JKQLUG11.008 111 © 2019–2024 meshIQ

8.2.3 Configuration
As indicated earlier, these definitions are defined in a configuration file. The general

format of the external provider type configuration is:

<ext-provider-type name="" impclass="">

 <properties>

 <property name="" datatype="" required="" default=""

 encrypt=""/>

 </properties>

</ext-provider-type>

8.2.4 Example
<?xml version="1.0" encoding="UTF-8" ?>

<ext-provider-type name="TestExtProvider"

 impclass="
com.mypkg.jkql.fcn.MyProviderType">

 <properties>

 <property name="StringProp" datatype="STRING"

required="true"/>

 <property name="IntProp" datatype="INTEGER"

default="123"/>

 <property name="BoolProp" datatype="BOOLEAN"

default="true"/>

 </properties>

</ext-provider-type>

Table 45. Provider Type Property Attributes

required

true/false flag indicating whether this property is required when invoking

an instance of the provider type. If a default value is specified, then this

property is not considered required, even if this value is set to true.

default

For properties that are not required, this defined the default value to use

for the property. If a value is specified for this attribute, then the required

flag is ignored, and property is not required.

encrypt

true/false flag indicating whether the value of this property should be

encrypted in the data store for action definitions that are instances of this

provider type.

jKQL User’s Guide Chapter 8: Extending jKQL

JKQLUG11.008 112 © 2019–2024 meshIQ

8.3 External jKQL Functions

External functions allow for custom query calculations to be added to jKQL query language.

They can be used like the standard built-in functions. There are different classes of

functions supported by jKQL (See Functions for description of function categories).

8.3.1 Function Definition
An external function definition has the following attributes:

8.3.2 Configuration
As indicated earlier, these definitions are defined in a configuration file. The general

format of the external function configuration is:

<ext-function name="" impclass=""/>

8.3.3 Example
<?xml version="1.0" encoding="UTF-8" ?>

<ext-config>

 <ext-function name="TestExtFcn"

 impclass="com.mypkg.jkql.fcn.TestExtFcn"/>

 <ext-function name="TestExtAggFcn"

 impclass=" com.mypkg.jkql.fcn.TestExtAggFcn"/>

Table 46. External Function Attributes

name

Defines the name of the function. This is the label that will be used in jKQL queries.

This name must be unique among all functions, including built-in and other externally

defined ones. It must also not match any of the keywords in jKQL language.

implclass

The full name of the Java class that implements the function. This class must

implement one of the Java interfaces, depending on its use (See Functions for function

categories):

Analytic: com.nastel.jkool.jkql.function.analytic.

JKQLAnalyticFunction

Spanning: com.nastel.jkool.jkql.function.spanning.

JKQLSpanningFunction

Aggregate: com.nastel.jkool.jkql.function.agg.

JKQLAggregateFunction

Scalar: com.nastel.jkool.jkql.function.JKQLFunction

jKQL User’s Guide Chapter 8: Extending jKQL

JKQLUG11.008 113 © 2019–2024 meshIQ

 <ext-function name="TestExtAnalyticFcn"

 impclass="
com.mypkg.jkql.fcn.TestExtAnalyticFcn"/>

</ext-config>

JKQLUG11.008 114 © 2019–2024 meshIQ

Chapter 9: jKQL Scripts

jKQL Scripts allow custom processing functionality to be executed. For those familiar with

SQL systems, these are analogous to stored procedures/functions. With them, data can be

loaded from jKQL data store, processed, and written back out to data store and/or

returned for display in UI.

jKQL Script definitions are kept in jKQL data store. The definition contains either the

complete text for the script, or a URI from which to retrieve the text. The text must be valid

JavaScript. However, there are restrictions as to the Java classes available. Think of jKQL

scripts as having a JavaScript-like syntax.

9.1 Defining

Scripts are defined using the Upsert statement. Some examples:

Upsert Script Name = 'TestScript', Text = 'var rs = executeJKQL(\'Get

number of events for latest year group by eventname\');

setReturnResult(rs);'

Upsert Script Name = 'TestUrl', Url = 'file:/home/me/example.js',

Properties = ('FilterField'='STRING', 'FilterValue'='STRING',

'GroupField'='STRING'), Options = ('MaxRawRows'=30000)

9.1.1 Parameters
Script parameters allow passing custom values to the actual script execution. When

defining the script, the name and data type of the parameters are defined. When

executing a script, specific values of the defined data type are provided. In the above

example, script TestUrl defines 2 parameters: Param1 whose value is expected to be a

string, and Param2, whose value is expected to be an integer (See Maps for supported data

types).

9.1.2 Options
Script execution can be controlled by defining values for supported statement options.

Currently, the set of supported options are:

Table 47. Statement Options for Scripts

MaxRawRows

Defines the maximum number of data rows to retrieve when querying the

underlying datastore. If not specified, the default row count defined in the

system will be used. It’s recommended that this value not exceed 50K. The

actual maximum value that can be used depends on the amount of data

being retrieved and the amount of system resources available.

SafeMode

Allows running the script in “Safe Mode.” In this mode, all database

statements that could alter the database (either directly or via side effects)

are not actually executed, but instead an entry is written to the log table.

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 115 © 2019–2024 meshIQ

9.2 Executing jKQL Scripts

Scripts are run via the Invoke statement.

INVOKE SCRIPT {script_name | FROM file | TEXT script_text}

 [USING [PROPERTIES] map_value_list]

 [WHERE bool_expr]

 [{SORT | ORDER} BY sort_field_expr [, sort_field_expr ...]

 [RANGE row_start , row_count]

 [{SHOW | DISPLAY} AS show_type [(show_param [, show_param

...])]]

 [stmt_options]

script_name:

 string

file:

 string

script_text:

 string

Some examples:

Invoke Script 'TestScript'

Invoke Script 'TestUrl' Using 'Param1'='Some String', 'Param2'=120000

9.3 API Reference

As mentioned previously, jKQL scripts have a JavaScript syntax, and have access to the

types and functions defined below. These are mainly provided to allow proper

interpretation of query results.

Table 47. Statement Options for Scripts

Tag

When running in safe mode, the log entries created as a result of blocking

database-altering statements can be optionally tagged, to allow grouping or

marking all log entries from a single script run together.

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 116 © 2019–2024 meshIQ

9.3.1 Types

9.3.1.1 Enumerations

All enumeration types have the following methods. Note that <enum> represents the

actual enumeration type the method is applied to.

All enumeration members have the following methods.

AccessType

Represents the supported set of access types. Members of this enumeration are:

• VIEW

• MODIFY

• OWNERSHIP

ActiveItemType

Represents the set of entities that can be referenced in a “Get Active XXX” query. Members

of this enumeration are:

Table 48. Enumeration Methods

int size() Returns the number of members in the enumeration type.

<enum>[] values Returns an array containing all members in the enumeration

type.

<enum> valueOf

(String str)
Returns the enumeration member of the enumeration type that

matches the specified string. If no such member, returns null.

<enum> valueOf

(int ordinal)

Returns the enumeration member of the enumeration type with

the specified ordinal. If no such member, returns null.

<enum> valueOf

(Object obj)

Returns the enumeration member of the enumeration type that

matches the specified object. If obj is a member of this

enumeration type, then the object is simply returned. If obj is a

numeric value, then returns result of valueOf(int ordinal).

Otherwise, converts obj to a string and returns result of

valueOf(String str). If no such member, returns null.

Table 49. Enumeration Member Methods

<enum> enumType() Returns the enumeration type that the enumeration member

belongs to.

String getLabel() Gets the enumeration member’s label, i.e., the values used when

using the enumeration in a jKQL statement.

int ordinal() Returns the ordinal number for the enumeration member, i.e.,

its position in the enumeration member sequence.

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 117 © 2019–2024 meshIQ

• QUERIES

• JOBS

• VIEWS

• STREAM_SESSIONS

• CLIENT_SESSIONS

• SCRIPTS

• MODELS

This enumeration type also has the following method:

ActivityStatusType

Represents the set of valid Activity statuses. Members of this enumeration are:

• UNKNOWN

• BEGIN

• END

• EXCEPTION

CalendarField

Represents the set of valid calendar units. Members of this enumeration are:

• YEAR

• MONTH

• DAY

• DAY_OF_WEEK

• DAY_OF_YEAR

• HOUR

• MINUTE

• SECOND

• MILLISECOND

• MICROSECOND

• WEEK

• WEEK_OF_YEAR

This enumeration type also has the following method:

Table 50. ActiveItemType Enumeration Methods

ActiveItemType getTypeFromItemType

(ItemType itemType)

Returns the ActiveItemType member that

corresponds to the specified ItemType. Returns

null if no such member.

Table 51. CalendarField Enumeration Methods

number getUsecPerUnit() Returns the number of microseconds in the calendar unit.

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 118 © 2019–2024 meshIQ

CompCodeType

Represents the set of valid completion codes. Members of this enumeration are:

• SUCCESS

• WARNING

• ERROR

DataType

Represents the set of recognized jKQL data types. Members of this enumeration are:

• STRING Fields of this type have values of type String

• INTEGER Fields of this type have values of type Number (internally, a Long)

• DECIMAL Fields of this type have values of type Number (internally, a Double)

• BOOLEAN Fields of this type have values of type Boolean

• TIMESTAMP Fields of this type have values of type UsecTimestamp

• TIMEINTERVAL Fields of this type have values of type UsecTimeInterval

• VARIANT Fields of this type can contain values of any valid data type

• ENUM Fields of this type have values that are members of one of the

enumeration types

• MAP Fields of this type have values are instance of Map

• RANGE Result columns of this type have values are instance of Range.

These types of values are returned for columns that contain

bucketed groupings.

• CLOB Fields of this type contain large String values, stored in binary

format. Fields of this type cannot be searched or filtered on.

EventType

Represents the set of valid Event types. Members of this enumeration are:

• OTHER

• NOOP

• CALL

• EVENT

• START

Table 51. CalendarField Enumeration Methods

number getUsecScaleFactor

(CalendarField toField)

Returns the scaling factor for converting a microsecond-

resolution value in this calendar unit to the specified calendar

unit.

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 119 © 2019–2024 meshIQ

• STOP

• OPEN

• CLOSE

• SEND

• RECEIVE

• INQUIRE

• SET

• BROWSE

• ADD

• UPDATE

• REMOVE

• CLEAR

FieldType

Represents the set of all recognized item fields, including those defined in External Data

Sources. For map fields, the type and valid set of keys and values are defined by the item

type(s) supporting the field. Information about defined field types can be retrieved using

“Get Fields” statement (see Get Info).

This enumeration type also has the following method:

The set of internally defined field types is:

Enum name DataType Enumeration defining values

SOURCE_FQN STRING

SOURCE_NAME STRING

SOURCE_TYPE ENUM Tnt4jSourceType

SOURCE_SSN STRING

SERVER_NAME STRING

APPSVR_NAME STRING

APPL_NAME STRING

PROCESS_NAME STRING

SRC_USER_NAME STRING

GEOLOC_NAME STRING

NETADDR_NAME STRING

RUNTIME_NAME STRING

VIRTUAL_NAME STRING

NETWORK_NAME STRING

Table 52. FieldType Enumeration Methods

Set<FieldType> getTypes

(DataType datatype)

Returns the set of FieldType members that have the specified

data type.

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 120 © 2019–2024 meshIQ

Enum name DataType Enumeration defining values

DEVICE_NAME STRING

DATACNTR_NAME STRING

GENSRC_NAME STRING

ACTIVITY_ID STRING

ACTIVITY_NAME STRING

PARENT_ID STRING

ACTIVITY_STATUS ENUM ActivityStatusType

EVENT_ID STRING

EVENT_NAME STRING

EVENT_TYPE ENUM EventType

REPORT_TIME TIMESTAMP

START_TIME TIMESTAMP

END_TIME TIMESTAMP

ELAPSED_TIME TIMEINTERVAL

PROCESS_ID INTEGER

THREAD_ID INTEGER

COMP_CODE ENUM CompCodeType

REASON_CODE INTEGER

EXCEPTION STRING

SEVERITY ENUM SeverityType

LOCATION STRING

CORRELATOR STRING

TAG STRING

USER_NAME STRING

RESOURCE_NAME STRING

MESSAGE STRING

MSG_SIG STRING

MSG_LEN INTEGER

MSG_MIME STRING

MSG_ENCODING STRING

MSG_CHARSET STRING

UPDATE_TIME TIMESTAMP

EXECUTED_TIME TIMESTAMP

EVENT_COUNT INTEGER

DERIVED BOOLEAN

ANCESTOR STRING

STATS MAP

SS_COUNT INTEGER

WAIT_TIME TIMEINTERVAL

SET_NAME STRING

SET_SCOPE ENUM SetScopeType

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 121 © 2019–2024 meshIQ

Enum name DataType Enumeration defining values

CRITERIA STRING

OBJECTIVES MAP

SNAPSHOT_NAME STRING

DICTIONARY_NAME STRING

PROPERTIES MAP

PREDICTIONS MAP

CONFIDENCE MAP

PROP_VAL_TYPES MAP

SNAPSHOT_TIME TIMESTAMP

CATEGORY STRING

RELATIVE_TYPE ENUM RelativeType

PARENT STRING

PARENT_TYPE ENUM Enumeration type is based on item type

CHILD STRING

CHILD_TYPE ENUM Enumeration type is based on item type

LOW_ADDR INTEGER

HIGH_ADDR INTEGER

COUNTRY_ABBR STRING

COUNTRY_NAME STRING

STATE_NAME STRING

CITY_NAME STRING

LATITUDE DECIMAL

LONGITUDE DECIMAL

TIMEZONE STRING

PRNT_CNTRY_ABBR STRING

PRNT_COUNTRY STRING

PRNT_STATE STRING

PRNT_CITY STRING

PRNT_LATITUDE DECIMAL

PRNT_LONGITUDE DECIMAL

PRNT_TZ STRING

CHLD_CNTRY_ABBR STRING

CHLD_COUNTRY STRING

CHLD_STATE STRING

CHLD_CITY STRING

CHLD_LATITUDE DECIMAL

CHLD_LONGITUDE DECIMAL

CHLD_TZ STRING

JKQL_STMT STRING

PARAM_NAME ENUM ParameterType

PARAM_VALUE STRING

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 122 © 2019–2024 meshIQ

Enum name DataType Enumeration defining values

TTL TIMEINTERVAL

NUMBER_OF INTEGER

ID INTEGER

NAME STRING

ITEM_TYPE ENUM ItemType

FIELD_TYPE ENUM FieldType

DATA_TYPE ENUN DataType

PERCENT DECIMAL

TYPE STRING

SUB_ID STRING

PASSWORD STRING

ORG_NAME STRING

COMPANY_NAME STRING

COMPANY_ADDR STRING

OWNER STRING

EMAIL STRING

URL STRING

ADMIN_ROLE STRING

TEAM_NAME STRING

REPO_NAME STRING

REPO_ID STRING

TOKEN STRING

CREATE_TIME TIMESTAMP

ACTIVE BOOLEAN

QUOTA MAP

JOB_ID STRING

DESC STRING

LOG_ID STRING

LOG_TYPE ENUM LogType

IMAGE BINARY

RES_TYPE ENUM Tnt4jSourceType

PARENT_FQN STRING

CHILD_FQN STRING

PROVIDER_TYPE STRING

ACTION_NAME STRING

IMPLCLASS STRING

JOB_STATUS ENUM JobStatusType

SET_SEQ STRING

ITEM_NAME STRING

FIELD_NAME STRING

MSG_AGE TIMEINTERVAL

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 123 © 2019–2024 meshIQ

Enum name DataType Enumeration defining values

COMP_FIELDS MAP

TEXT STRING

WEIGHT INTEGER

VOLUME_NAME STRING

TOKEN_ID STRING

COMPUTE_INST STRING

POLICIES MAP

USER_ROLE STRING

EFFECTIVE_ROLE ENUM AccessType

DATE TIMESTAMP

SCORE DECIMAL

IS_ANOMALY BOOLEAN

NEXT_EXEC_TIME TIMESTAMP

DEFAULTS MAP

ARGUMENTS MAP

FREQUENCY TIMEINTERVAL

RESULT STRING

OPTIONS MAP

STMT_TYPE ENUM StatementType

FEATURES STRING

EFF_FEATURES STRING

EFF_QUOTAS MAP

REMOTE_ADDRESS STRING

REMOTE_PORT INTEGER

LOCAL_ADDRESS STRING

LOCAL_PORT INTEGER

ACTUAL DECIMAL

PREDICTED DECIMAL

CONN_ID STRING

LICENSE MAP

HOST STRING

PORT INTEGER

TEMPLATE_NAME STRING

ANOMALY_MARGIN DECIMAL

IS_TIMESERIES BOOLEAN

ML_TARGET STRING

IVS STRING

ACCURACY DECIMAL

TS_INTERVAL ENUM IntervalType

TS_FIELD STRING

ML_IMPORTANCE STRING

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 124 © 2019–2024 meshIQ

Enum name DataType Enumeration defining values

OPTIMAL_MODEL STRING

LOG_TAKEN BOOLEAN

MARGIN_TYPE ENUM MarginType

REPORTING_FIELDS STRING

RECVD_TIME TIMESTAMP

DATE_FILTER STRING

PERCENT_OF DECIMAL

CLOSED BOOLEAN

EXPIRE_TIME TIMESTAMP

DICTIONARY_ID STRING

DATASET_NAME STRING

DATASET_ID STRING

VERSION STRING

EFF_OWNER STRING

EFF_ADMIN_ROLE STRING

EFF_USER_ROLE STRING

MAX_DATA_DATE TIMESTAMP

IVS_FINAL STRING

LABEL STRING

ENUM_CLASS STRING

SYNONYM STRING

BASE_ID INTEGER

SCHEDULE STRING

SEQ_NUM TIMESTAMP

SNAPSHOT_ID STRING

FORECAST DECIMAL

FORECAST_UPPER DECIMAL

FORECAST_LOWER DECIMAL

DATASET_TIME TIMESTAMP

VOLUME_USER STRING

VOLUME_PWD STRING

Members of this enumeration type have the following methods:

Table 53. FieldType Enumeration Member Methods

DataType getDataType() Returns data type of values for this field.

<enum> getEnum(int ordinal) For fields whose data type is ENUM, returns the

member of the enumeration for this field with the

specified ordinal. If there is no such enumeration

member, or if this field’s data type is not ENUM,

then null is returned.

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 125 © 2019–2024 meshIQ

Table 53. FieldType Enumeration Member Methods

<enum> getEnum(String str) For fields whose data type is ENUM, returns the

member of the enumeration for this field with the

specified name or label. If there is no such

enumeration member, or if this field’s data type is

not ENUM, then null is returned.

<enum> getEnum(Object obj) For fields whose data type is ENUM, returns the

member of the enumeration for this field that

matches the specified object. If obj is a member

of this enumeration type, then the object is

simply returned. If obj is a numeric value, then

returns result of getEnum(int ordinal).

Otherwise, converts obj to a string and returns

result of getEnum(String str). If there is

no such enumeration member, or if this field’s

data type is not ENUM, then null is returned.

<enum_type> getEnumClass() For fields whose data type is ENUM, returns the

enumeration type for this field. If this field’s data

type is not ENUM, then null is returned.

String getEnumLabel(int ordinal) For fields whose data type is ENUM, returns the

string name of the member of the enumeration

for this field with the specified ordinal. If there is

no such enumeration member, or if this field’s

data type is not ENUM, then null is returned.

int getEnumValue(String str) For fields whose data type is ENUM, returns the

ordinal of the member of the enumeration for

this field with the specified name or label. If there

is no such enumeration member, or if this field’s

data type is not ENUM, then null is returned.

DataType getMapValueDataType() For fields whose data type is MAP, if all key

values are of the same data type, returns that

data type. If field data type is not MAP, or key

values can be different data types, then null is

returned.

Tnt4jSourceType

getTnt4jSourceType()
For fields that correspond to TNT4J source

component types, returns the member of

enumeration Tnt4jSourceType that corresponds

to this field type. If field does not correspond to a

TNT4J source type, then null is returned.

Boolean isDerived() Returns whether this field is a derived field (see

Fields)

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 126 © 2019–2024 meshIQ

IntervalType

Represents the set of valid Machine Learning time series interval types. Members of this

enumeration are:

• MINUTE

• HOUR

• DAY_OF_YEAR

• WEEK_OF_YEAR

• MONTH

ItemType

Represents the set of all recognized items, including those defined in External Data

Sources. Information about defined item types can be retrieved using “Get Items”

statement (see Get Info).

This enumeration type also has the following method:

The set of internally defined item types is:

• SOURCE

• GEOLOCATION

• NETADDRESS

• SERVER

• PROCESS

• APPSERVER

• APPLICATION

• SRC_USER

• RUNTIME

• VIRTUAL_SOUR

CE

• NETWORK

• DEVICE

• DATACENTER

• GENERIC_SOUR

CE

• EVENT

• ACTIVITY

• RESOURCE

• SET

• SNAPSHOT

• DICTIONARY

• RELATIVE

• TOPIC

• IPLOCATION

• ENUMERATION

• ITEM_TYPE

• FIELD_TYPE

• USER

• ORGANIZATION

• TEAM

• REPOSITORY

• ACCESS_TOKEN

• STATEMENT

• JOB

• LOG

• ACTION

• INDATA_RULES

• VOLUME

• PARAMETER

• KEYWORD

• FUNCTION

• PROVIDERTYPE

• QUERY

• VIEW_TEMPLAT

E

• VIEW

• FEATURE

• STREAM_SESSIO

N

• CLIENT_SESSIO

N

• SUBSCRIPTION

• LICENSE

• QUOTA_USAGE

• ML_MODEL

• DATASET

• EXT_ITEM

• EXT_FIELD

• EXT_ITEM_FIEL

D

Table 54. ItemType Enumeration Methods

Set<ItemType> getDataPoints() Returns the set of ItemType members that are

considered to be data points.

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 127 © 2019–2024 meshIQ

• EXT_DATA_SRC_

T

• EXT_FUNCTION

• SCRIPT

Members of this enumeration type have the following methods:

Table 55. ItemType Enumeration Member Methods

FieldType getDateField() Returns the default date field (of type

TIMESTAMP) for this item, or null if this item

has no date field.

Set<FieldType> getDefaultFields() Returns the set of fields that are returned by

default when querying for this item when not

specifying a specific set of fields.

Set<FieldExpr> getDefaultLimitFields

(LimitType limitType)

Returns the set of fields used by default for the

“limiting queries” (e.g., Get Latest, Get Worst,

etc.) when not explicitly specifying field(s) to use

using “Based On” clause. Returns null if no such

fields, implying that the limiting type generally

does not apply to this item.

Set<String> getFieldLabels() Returns the labels for the full set of field types

supported by this item type.

Set<FieldType> getFields() Returns the full set of fields supported by this

item type.

Set<FieldType> getFields

(DataType dataType)

Returns the full set of fields supported by this

item type that are of the specified data type.

FieldType getIDField() Returns the field that is considered the “ID” field

for this item type. Used when issuing jKQL

statements referencing the generic field “ID”, to

determine which field to use. Returns null if this

item type has no field that represents its ID.

Set<FieldType> getListFields() Returns the set of fields whose value is a list of

values (of the field’s data type).

Set<DataType> getMapFieldDataTypes

(FieldType field)

Returns the set of data types that key values can

be for the specified map field for this item.

Returns null if field type is not supported by this

item or if the data type of this field is not MAP.

FieldType getNameField() Returns the field that is considered the “name”

field for this item type. Used when issuing jKQL

statements referencing the generic field “Name”,

to determine which field to use. Returns null if
this item type has no field that represents its

name.

Set<FieldType> getNonDerivedFields() Returns the set of fields for this item type that

are not derived.

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 128 © 2019–2024 meshIQ

Table 55. ItemType Enumeration Member Methods

Set<FieldType> getPrimaryKeyFields() Returns the set of fields that considered the

primary key for this item type, uniquely

identifying each item of this type.

Set<String> getRequiredFeatures() For item types whose use is controlled by license

features, returns the set of features that are

required to use this item type. Returns null if
item type is not controlled by a license feature.

Map<String,DataType>

getSupportedOptions()
Returns the set of options supported by this

item type, along with the data type of the option.

Returns null if item type does not have any

options.

Set<StatementType>

getSupportedStmtTypes()

Returns the set of statements that can be

applied to this item type.

Tnt4jSourceType getTnt4jSourceType() For item types that correspond to TNT4J source

types, returns the corresponding source type.

Returns null if no corresponding source type.

FieldType getTypeField() Returns the field that is considered the “type”

field for this item type. Used when issuing jKQL

statements referencing the generic field “Type”,

to determine which field to use. Returns null if
this item type has no field that represents its

type.

boolean isAdminItem() Returns indication of whether this item type is

an administration item.

boolean isDataPoint() Returns indication if this item type is considered

a data point when evaluating data point license

quota.

boolean isDefaultField

(FieldType field)

Returns whether specified field is a default field,

returned by default when querying for this item

when not specifying a specific set of fields.

boolean isDerived() Returns whether this item type is a derived item

type, which means that instances of it are not

directly created but are derived from other

items.

boolean isFieldDerived

(FieldType field)

Returns whether the specified field is a derived

field for this item type.

boolean isFieldList

(FieldType field)

Returns whether the value for the specified field

is a list of values of the field’s data type.

boolean isFieldSupported

(FieldType field)

Returns whether the specified field is supported

by this item type.

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 129 © 2019–2024 meshIQ

JKQLInfoType

Represents the set of valid jKQL reference types which can be queried for via Get

statement (see Get Info). Members of this enumeration are:

• KEYWORDS

• FUNCTIONS

• SCALAR_FCNS

• AGGREGATE_FCNS

• ANALYTIC_FCNS

• PROVIDERTYPES

• STATEMENTS

JobStatusType

Represents the set of valid Job status types. Members of this enumeration are:

• SCHEDULED

• RUNNING

• PAUSED

• COMPLETED

• FAILED

• CANCELED

• PENDING

LimitType

Represents the set of valid query result limiting expressions supported by Get statement

(see Get). Members of this enumeration are:

Table 55. ItemType Enumeration Member Methods

boolean isFindable() Returns whether instances of this item type can

be searched for using Find statement.

boolean isJKQLElement() Returns whether this item type represents an

element of a jKQL statement (see Get Info).

boolean isPrimaryKey

(FieldType field)

Returns whether the specified field is part of the

item type’s primary key.

boolean isReferenceItem() Returns whether this item type represents a

reference item.

boolean isRepositoryRequired() Returns whether a repository must be set when

issuing statements for this item type.

boolean isStored() Returns whether instances of this item type are

stored in data store.

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 130 © 2019–2024 meshIQ

• FIRST

• LAST

• TOP

• BOTTOM

• EARLIEST

• LATEST

• BEST

• WORST

• LONGEST

• SHORTEST

• LARGEST

• SMALLEST

LogType

Represents the set of valid Log entry types. Members of this enumeration are:

• GENERAL

• ERROR

• QUERY

• AUDIT

• ML

• SCRIPT

MarginType

Represents the set of valid anomaly margin types. Members of this enumeration are:

• FUNCTION

• NUMERIC

ParameterType

Represents the set of valid jKQL data store connection parameter types (see Get Info).

Members of this enumeration are:

• REPOSITORY_ID

• USER_NAME

• TIMEZONE

• MAX_RESULT_ROWS

• API_NAME

• API_VERSION

• API_BUILDTIME

• DATE_FILTER

• GLOBAL_REPOS

• AUTH_MODE

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 131 © 2019–2024 meshIQ

• INSTALL_MODE

• LOCALE

RelativeType

Represents the set of valid Relative types, the types of Source and Resource relationships

that Activity and Event processing generate. Members of this enumeration are:

• ENCLOSE Indicates the first item in relationship encloses

(contains) the second item

• SEND_TO Indicates the first item in relationship sent data received

by the second item

• BELONG_TO Indicates the first item in relationship belongs to (is

contained within) the second item

• RECV_FROM Indicates the first item in relationship received data sent

by the second item

• ACTS_ON Indicates the first item in relationship "acts on", or

"manipulates" the second item

• ACTS_ON_WRITE Indicates the first item in relationship "acts on", or

"manipulates" the second item by writing to it

• ACTS_ON_READ Indicates the first item in relationship "acts on", or

"manipulates" the second item by reading from it

• ACTED_UPON Indicates the first item in relationship was "acted upon",

or "manipulated" by the second item

• ACTED_UPON_WRITE Indicates the first item in relationship was "acted upon",

or "manipulated" by the second item by being written to

• ACTED_UPON_READ Indicates the first item in relationship was "acted upon",

or "manipulated" by the second item by being read from

• SEND_TO_ROGUE Indicates the first item in relationship sent data received

by the second item and the elapsed time is out of the

ordinary (i.e., an anomaly)

• ACTS_ON_READ_ROGUE Indicates the first item in relationship "acts on", or

"manipulates" the second item by reading from it and

the elapsed time is out of the ordinary (i.e., an anomaly)

• ACTS_ON_WRITE_ROGUE Indicates the first item in relationship "acts on", or

"manipulates" the second item by reading from it and

the elapsed time is out of the ordinary (i.e., an anomaly)

• CORRELATED Indicates the two items are stitched into same activity

because they share a common correlator

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 132 © 2019–2024 meshIQ

RepoOptionType

Represents the set of supported Repository options. Members of this enumeration are:

• STITCHING

• RELATIVES

• INDEX

• ARCHIVE

• SOURCES

• RESOURCES

SetOptionType

Represents the set of valid Set option types. Members of this enumeration are:

• INDEX Controls whether members of the set are written to underlying data

store

• ARCHIVE Controls whether members of the set are written to cold storage

SetScopeType

Represents the set of valid Set scope types, defining how members of the set are

determined. Members of this enumeration are:

• SINGULAR Members of the set are those tracking items that explicitly match the

set criteria

• RELATED Members of the set are those tracking items that explicitly match the

set criteria, and all tracking items that are related to (stitched to)

those items

SeverityType

Represents the set of valid severity types. Members of this enumeration are:

• NONE

• TRACE

• DEBUG

• INFO

• NOTICE

• WARNING

• ERROR

• FAILURE

• CRITICAL

• FATAL

• HALT

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 133 © 2019–2024 meshIQ

StatementType

Represents the set of jKQL statement types. Members of this enumeration are:

• GET

• COMPARE

• UPSERT

• DELETE

• SIGN_IN

• USE

• COMPUTE

• CREATE

• ALTER

• DROP

• RESET

• ENABLE

• DISABLE

• GRANT

• REVOKE

• FIND

• UPDATE

• INSERT

• LOAD

• TRAIN

• PURGE

• INVOKE

• CHAIN

Members of this enumeration type have the following method:

StmtOptionType

Represents the set of valid jKQL statement option types (see Statement Options). Members

of this enumeration are:

Table 56. DataType Enumeration Member Methods

TokenOptionType getRequiredOption() Returns the token option type required to

execute this type of statement via an Access

Token. Returns null if this statement does not

require a specific token option.

boolean isAdminStatement() Returns true the statement is considered an

administration statement (manipulates

administration items).

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 134 © 2019–2024 meshIQ

• TRACE If set to true, will record in Log table a set of entries detailing the

step-by-step execution of the statement through the query

processing grid. Useful for determine if query responses are not

being received, to see which step in the process the query is stuck

in.

• TAG Allows setting a custom tag to include with log entries associated

with this statement. Helps in filtering only log entries related to

this specific query.

• TIMEOUT Allows setting a maximum execution time for the query. If query

does not complete in this time, a Timeout exception will be

returned.

• MAX_RAW_ROWS For queries defined in Views, allows overriding the default

maximum number of rows returned from underlying data store.

• DEBUG For Invoke Script statements, enables debug logging for the

execution of the script. The logging is written to internal debug

log files, and as a result, is only useful for system administrators

to determine issues running jKQL scripts.

• SAFE_MODE For Invoke Script statements, runs the script in “safe mode”,

where the script will run as normal, except that all database

modification functions (e.g., upserts, etc.) will just log that they

would have run, but will not actually alter the database.

Members of this enumeration type have the following methods:

Tnt4jSourceType

Represents the set of recognized Source and Resource types reported by TNT4J. Members

of this enumeration are:

• GENERIC

• USER

• APPL

• PROCESS

• APPSERVER

• SERVER

• RUNTIME

• VIRTUAL

• NETWORK

• DEVICE

• NETADDR

Table 57. StmtOptionType Enumeration Member Methods

DataType getDataType() Returns the data type for values of this

statement option.

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 135 © 2019–2024 meshIQ

• GEOADDR

• DATACENTER

• DATASTORE

• CACHE

• SERVICE

• QUEUE

• FILE

• TOPIC

TokenOptionType

Represents the set of supported Access Token options. Members of this enumeration are:

• STREAM

• QUERY

• MODIFY

• DELETE

• ADMIN

• EXECUTE

9.3.1.2 Types

jKQL Script API provides several object types, which correspond to underlying Java classes.

These types optionally include type methods (defined on the type itself, i.e., static

methods), and instance methods (applied to instances of the type).

The following object types are available to scripts:

ActionData

For Scripts that are invoked from an Action, this represents information about the

corresponding Action. This information is only available when a Script is invoked from an

Action.

Table 58. ActionData Instance Methods

String getActionName() Gets the name of the action that invoked the script.

Map<String,Object>

getActionProperties()
Gets the set of Action property (name,value) pairs.

String getProviderType() Gets the name of the Provider Type that the Action is

based on.

String getRepoId() Gets the Repository ID that the Action fired for.

UsecTimestamp getTime() Gets the time that the Action was executed.

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 136 © 2019–2024 meshIQ

ComparableList

This is a list (java.util.List) that can be compared to other ComparableLists. The order of the

elements in the list is maintained until the list is compared to another, which triggers it to

be sorted.

In addition to instance methods defined in java.util.List and java.lang.Comparable, instances

of this type also contain the following methods:

ComparableMap

This is a map (java.util.Map) that can be compared to other ComparableMaps. This map

maintains the keys in their natural ordering.

Instances of this type contains the methods defined in java.util.Map and

java.lang.Comparable.

ComparableSet

This is a map (java.util.Set) that can be compared to other ComparableSets. This set

maintains the members in their natural ordering.

Instances of this type contains the methods defined in java.util.Set and

java.lang.Comparable.

JKoolLocale

Represents locales for controlling how dates and numbers are interpreted and displayed.

This type should be used instead of the java.util.Locale (although underlying java.util.Locale

can be accessed).

This type contains the following methods:

Table 59. ComparableList Instance Methods

void sort() Sorts the list based on the natural ordering of the

elements.

Table 60. JKoolLocale Methods

Set<String> getAllDisplayNames() Returns the full set of JKoolLocale display names.

Set<JKoolLocale> getAllLocales() Returns the full set of JKoolLocale instances.

Set<String> getAllNames() Returns the full set of JKoolLocale internal names.

JKoolLocale getDefault() Returns the current default JKoolLocale to use.

JKoolLocale getLocale

(String name)

Returns the JKoolLocale instance with the specified

name (either internal name or display name).

void setDefault

(JKoolLocale locale)
Sets the current default JKoolLocale to use.

https://docs.oracle.com/javase/8/docs/api/java/util/List.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html
https://docs.oracle.com/javase/8/docs/api/java/util/Map.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html
https://docs.oracle.com/javase/8/docs/api/java/util/Set.html

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 137 © 2019–2024 meshIQ

In addition to instance methods defined in java.lang.Comparable, instances of this type also

contain the following methods:

JKoolTimeZone

Represents time zones for controlling how dates are interpreted and displayed. This type

should be used instead of the java.util.TimeZone (although underlying java.util.TimeZone

can be accessed). This type provides the following methods:

In addition to instance methods defined in java.lang.Comparable, instances of this type also

contain the following methods:

Table 61. JKoolLocale Instance Methods

String getDisplayName() Returns this instance’s display name.

java.util.Locale getLocale() Returns the underlying system Locale instance.

String getName() Returns the instance’s internal name.

Table 62. JKoolTimeZone Methods

Set<String> getAllDisplayNames() Returns the full set of JKoolTimeZone display names.

Set< JKoolTimeZone>
getAllTimeZones()

Returns the full set of JKoolTimeZone instances.

Set<String> getAllNames() Returns the full set of JKoolTimeZone internal names.

JKoolTimeZone getDefault() Returns the current default JKoolTimeZone to use.

JKoolTimeZone getTimeZone

(String name)

Returns the JKoolTimeZone instance with the specified

name (either internal name or display name).

JKoolTimeZone getTimeZone

(int offset)

Returns the JKoolTimeZone instance with the specified

GMT offset.

void setDefault

(JKoolTimeZone tz)
Sets the current default JKoolTimeZone to use.

Table 63. JKoolTimeZone Instance Methods

String getDisplayName() Returns this instance’s display name.

String getGmtOffset() Returns GMT offset as a string (e.g., “+02:00”).

int getRawOffset() Returns numeric GMT offset as the number of

milliseconds from GMT.

java.util.TimeZone getTimeZone() Returns the underlying system TimeZone instance.

String getName() Returns the instance’s internal name.

https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Comparable.html

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 138 © 2019–2024 meshIQ

JKQLException

This can be used for throwing exceptions from the script back to the framework for

returning to the script’s caller. The constructor takes a String describing the error being

reported, as follows:

throw new JKQLException("Describe the error condition here");

JKQLExpr

Represents a jKQL expression used to define the type of a column in a ResultSet. There are

several types of JKQLExpr, representing the various supported expressions. All instances of

JKQLExpr are actually one of the defined subtypes. All types of JKQLExpr support the

following methods:

The supported subtypes of JKQLExpr are:

ColHdrExpr

Represents a non-field-based result set column. This is basically a custom result column,

consisting of a name and a data type.

FieldExpr

Represents a field-based result set column. For map fields, the expression may optionally

contain one or more map keys, indicating that the map values only contain the specified

keys (which may or may not be the full set of keys). FieldExpr contains the following

additional methods:

Table 64. Common JKQLExpr Instance Methods

DataType getDataType() Returns the data type of values of this expression type.

void setDataType

(DataType dataType)
Sets the data type of values of this expression type.

String getAlias() Gets the field alias used in this expression.

void setAlias(String alias) Sets the field alias used in this expression.

Table 65. FieldExpr Instance Methods

String[] getPropNames() Returns the list of specific map keys referenced by map

values in the column. If this return null, then the result

was not built from a query containing references to

specific keys, so map values will contain all keys for the

specific row.

DataType[] getPropTypes() Returns the data types for the specific map keys

referenced by map values in the column. The entries in

this list correspond to the entries returned by

getPropNames().

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 139 © 2019–2024 meshIQ

FunctionExpr

Represents a function-based expression. FunctionExpr contains the following additional

methods:

ValueExpr

Represents a constant value.

JKQLExprList

As the name implies, this is a list of JKQLExpr. This type provides the following methods:

Table 66. FunctionExpr Instance Methods

JKQLExpr[] getArgs() Returns the list of arguments being passed to the

function.

String getName() Returns the name of the function.

boolean isAggregate() Returns whether this function is an aggregate function

(see Built-in Aggregate Functions).

boolean isSpanningFunction() Returns whether this function is a spanning function

(see Built-in Spanning Functions).

Table 67. JKQLExprList Instance Methods

void add(JKQLExpr expr) Adds the specified expression to the end of this list.

void add

(int index, JKQLExpr expr)

Inserts the specified expression in this list at the given

index position, shifting the entry at that position and all

entries after it.

void addAll

(Collection<JKQLExpr> exprs)

Adds all the specified expressions to the end of this list,

in the order defined by the expression collection.

void addAll(int index,

Collection<JKQLExpr> exprs)

Inserts the specified expressions in this list at the given

index position, in the order defined by the expression

collection, shifting the entry at that position and all

entries after it.

boolean contains

(FieldType field)

Returns whether this list contains an expression

referencing the specified FieldType.

boolean containsAllFields

(Collection<FieldType> fields)

Returns whether all the specified FieldTypes are

referenced by any expression in this list.

int countOf(FieldType fieldType) Returns the number of expressions in this list that

reference the specified FieldType.

int find(FieldType fieldType) Returns the index of the first expression in this list that

references the specified FieldType. Returns -1 if no

expression in this list references the FieldType.

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 140 © 2019–2024 meshIQ

JKQLItem

Represents the definition of a jKQL item. Consists of key,value pairs, where key is a

FieldType and value is an object of the appropriate data type, based on field type’s data

type.

JKQLItem type is not used directly. There are several specific implementations of this type

that should be used:

• Activity

• Dataset

• Dictionary

• Event

• Log

• Resource

• Snapshot

• Source

The following methods are available for JKQLItems:

Table 67. JKQLExprList Instance Methods

JKQLExpr get(String alias) Returns the (first) expression in this list that has the

specified alias, or null if no such expression exists.

Set<FieldType> getFields() Gets the set of all FieldTypes referenced by all

expressions in this list.

boolean hasAggregates() Returns whether this list contains any aggregate

function expressions (see Built-in Aggregate Functions).

boolean hasFunctions() Returns whether this list contains any function

expressions (of any type).

boolean hasSpanningFcns() Returns whether this list contains any spanning function

expressions (see Built-in Spanning Functions).

Table 68. JKQLItem Instance Methods

Object getField(FieldType field) Returns the value for the specified field.

Object getMapFieldKey

(FieldType field, String key)

Returns the key value for the specified key from the

given MAP field.

Object removeField

(FieldType field)

Removes the specified field from the definition, and

returns the value the field had, if any.

void setField

(FieldType field, Object value)
Sets the specified field to the given value.

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 141 © 2019–2024 meshIQ

Range

Represents the start and end of a bucket when using Group By … Bucketed By … in a result

set. Instances of this type contain the following methods:

ResultSet

Represents the result of a jKQL statement, which is viewed as a tabular structure, with rows

and columns (each indexed starting at 1). Instances of this type contain the following

methods. All cell-based methods (those that have a row and column reference as

arguments) will throw an exception if there is not such cell (row or column index is out of

range, or there is no column that matches the specified column expression).

Table 68. JKQLItem Instance Methods

void setMapFieldKey

(FieldType field, String key,

Object value)

Sets the key value for the specified key in the given
MAP field.

Table 69. Range Instance Methods

Object getBegin() Returns this starting value for the range.

Object getEnd() Returns the ending value for the range.

DataType getDataType() Returns the data type of the start and end values, which

must be the same data type.

Table 70. ResultSet Instance Methods

int addColumn

(FieldType columnType)

Adds a new column to the result set, appending it to the

set of columns already added. The expected values for

the column are based on the specified FieldType. The

name of the column is derived from the FieldType’s

label. Note that columns cannot be added after rows

have been added. Returns the column number for the

newly added column.

int addColumn

(String columnName, FieldType

columnType)

Adds a new column with the specified name to the result

set, appending it to the set of columns already added.

The expected values for the column are based on the

specified FieldType. Note that columns cannot be added

after rows have been added. Returns the column

number for the newly added column.

int addColumn

(JKQLExpr columnExpr)

Adds a new column to the result set, appending it to the

set of columns already added. The expected values for

the column are based on the specified JKQLExpr. The

name of the column is based on the string

representation of the JKQLExpr. Note that columns

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 142 © 2019–2024 meshIQ

Table 70. ResultSet Instance Methods

cannot be added after rows have been added. Returns

the column number for the newly added column.

int addColumn

(String columnName, JKQLExpr

columnExpr)

Adds a new column with the specified name to the result

set, appending it to the set of columns already added.

The expected values for the column are based on the

specified JKQLExpr. Note that columns cannot be added

after rows have been added. Returns the column

number for the newly added column.

int addRow() Adds a new row to the end of the result set. Returns the

row number of the newly added row.

void addRows(int rowCount) Adds the specified number of rows to the end of the

result set.

int findColumn

(JKQLExpr fieldExpr)

Returns the column number of the first column that

contains the specified field expression. This is different

from getColumnNumber(JKQLExpr) in that this

method returns the first column that contains the

specified expression. For non-MAP fields, this is

essentially the same as

getColumnNumber(JKQLExpr). For MAP fields, this

method returns the first MAP column for the same field

type that contains a key in the specified field expression.

Returns -1 if no such column is found.

Map<String,Map<String,Object>>

getAllCategories()

Returns the number of items for each item type for all

search categories. This is only present in the result for a

Find statement (see Find).

Boolean getBoolean

(int row, int column)

Returns the specified cell value as a java.lang.Boolean.

Will throw an exception if cell value is not a Boolean

value.

Boolean getBoolean

(int row, String columnName)

Returns the specified cell value as a java.lang.Boolean.

Will throw an exception if cell value is not a Boolean

value.

 Boolean getBoolean

(int row, FieldType fieldType)

Returns the specified cell value as a java.lang.Boolean.

Will throw an exception if cell value is not a Boolean

value.

 Boolean getBoolean

(int row, JKQLExpr fieldExpr)
Returns the specified cell value as a java.lang.Boolean.

Will throw an exception if cell value is not a Boolean

value.

Map<String,Object>

getCategoryCounts

(String category)

Returns the number of items for each item type for the

specified search category. This is only present in the

result for a Find statement (see Find).

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 143 © 2019–2024 meshIQ

Table 70. ResultSet Instance Methods

int getColumnCount() Returns the number of columns in the result set.

JKQLExprList getColumnHeaders() Returns the list of all result column headers.

ItemType getColumnItemType() Returns the item type represented by the column

dimension of result set. This is only valid for Compare

statement results (see Compare).

String getColumnLabel

(int column)

Returns the display label for the column, which may not

necessarily be the same as the name of the column.

Generally, the value of the column alias (see

query_expr_list in Get)

String getColumnName

(int column)
Returns the name of the column.

int getColumnNumber

(FieldType fieldType)

Returns the number of the column that matches the

specified field type, or -1 if no such column.

int getColumnNumber

(JKQLExpr fieldExpr)

Returns the number of the column that matches the

specified field expression, or -1 if no such column.

int getColumnNumber

(String columnName)

Returns the number of the column with the specified

name, or -1 if no such column.

JKQLExpr getColumnType

(FieldType fieldType)

Returns the column expression for the column with the

specified field type, or null if no such column.

JKQLExpr getColumnType

(int column)

Returns the column expression for the column at the

specified index.

String getComputeFunction() Returns the name of the analytic function that computed

this result, or null if result was not computed by an

analytic function.

String getDataDateRange() Returns the range of dates covered by the data in the

results if this item type supports dates. Format of string

is:

<min_date_usec> TO <max_date_usec>

Double getDecimal

(int row, int column)

Returns the specified cell value as a java.lang.Double.

Will throw an exception if cell value is not a numeric

value.

Double getDecimal

(int row, String columnName)

Returns the specified cell value as a java.lang.Double.

Will throw an exception if cell value is not a numeric

value.

 Double getDecimal

(int row, FieldType fieldType)

Returns the specified cell value as a java.lang.Double.

Will throw an exception if cell value is not a numeric

value.

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 144 © 2019–2024 meshIQ

Table 70. ResultSet Instance Methods

 Double getDecimal

(int row, JKQLExpr fieldExpr)
Returns the specified cell value as a java.lang.Double.

Will throw an exception if cell value is not a numeric

value.

 int[] getGroupColumns() Returns list of result column indexes representing the

values that were grouped on, or null if the result is not

for a grouped query.

Long getInteger

(int row, int column)
Returns the specified cell value as a java.lang.Long. Will

throw an exception if cell value is not a numeric value.

Long getInteger

(int row, String columnName)

Returns the specified cell value as a java.lang.Long. Will

throw an exception if cell value is not a numeric value.

 Long getInteger

(int row, FieldType fieldType)

Returns the specified cell value as a java.lang.Long. Will

throw an exception if cell value is not a numeric value.

 Long getInteger

(int row, JKQLExpr fieldExpr)
Returns the specified cell value as a java.lang.Long. Will

throw an exception if cell value is not a numeric value.

ItemType getItemType() Returns the item type that the result set is for.

JKoolLocale getLocale() Returns the Locale being used to format timestamps

and numbers in the result set (does not affect the actual

values stored in result).

Boolean getMapKeyBooleanValue

(int row, int column, String

key)

Returns the key value from the specified cell map value

as a java.lang.Boolean. Will throw an exception if cell

value is not a Map or key’s value is not a Boolean value.

Boolean getMapKeyBooleanValue

(int row, String columnName,

String key)

Returns the key value from the specified cell map value

as a java.lang.Boolean. Will throw an exception if cell

value is not a Map or key’s value is not a Boolean value.

 Boolean getMapKeyBooleanValue

(int row, FieldType fieldType,

String key)

Returns the key value from the specified cell map value

as a java.lang.Boolean. Will throw an exception if cell

value is not a Map or key’s value is not a Boolean value.

 Boolean getMapKeyBooleanValue

(int row, JKQLExpr fieldExpr,

String key)

Returns the key value from the specified cell map value

as a java.lang.Boolean. Will throw an exception if cell

value is not a Map or key’s value is not a Boolean value.

Double getMapKeyDecimalValue

(int row, FieldType fieldType,

String key)

Returns the key value from the specified cell map value

as a java.lang.Double. Will throw an exception if cell

value is not a Map or key’s value is not a numeric value.

Double getMapKeyDecimalValue

(int row, String columnName,

String key)

Returns the key value from the specified cell map value

as a java.lang.Double. Will throw an exception if cell

value is not a Map or key’s value is not a numeric value.

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 145 © 2019–2024 meshIQ

Table 70. ResultSet Instance Methods

 Double getMapKeyDecimalValue

(int row, FieldType fieldType,

String key)

Returns the key value from the specified cell map value

as a java.lang.Double. Will throw an exception if cell

value is not a Map or key’s value is not a numeric value.

 Double getMapKeyDecimalValue

(int row, JKQLExpr fieldExpr,

String key)

Returns the key value from the specified cell map value

as a java.lang.Double. Will throw an exception if cell

value is not a Map or key’s value is not a numeric value.

Long getMapKeyIntegerValue

(int row, FieldType fieldType,

String key)

Returns the key value from the specified cell map value

as a java.lang.Long. Will throw an exception if cell value

is not a Map or key’s value is not a numeric value.

Long getMapKeyIntegerValue

(int row, String columnName,

String key)

Returns the key value from the specified cell map value

as a java.lang.Long. Will throw an exception if cell value

is not a Map or key’s value is not a numeric value.

 Long getMapKeyIntegerValue

(int row, FieldType fieldType,

String key)

Returns the key value from the specified cell map value

as a java.lang.Long. Will throw an exception if cell value

is not a Map or key’s value is not a numeric value.

 Long getMapKeyIntegerValue

(int row, JKQLExpr fieldExpr,

String key)

Returns the key value from the specified cell map value

as a java.lang.Long. Will throw an exception if cell value

is not a Map or key’s value is not a numeric value.

String getMapKeyStringValue

(int row, int column, String key)

Returns the key value from the specified cell map value

as a String. If the value is not a string, it will be

converted to one. Will throw an exception if cell value is

not a Map.

String getMapKeyStringValue

(int row, String columnName, String

key)

Returns the key value from the specified cell map value

as a String. If the value is not a string, it will be

converted to one. Will throw an exception if cell value is

not a Map.

String getMapKeyStringValue

(int row, FieldType fieldType, String

key)

Returns the key value from the specified cell map value

as a String. If the value is not a string, it will be

converted to one. Will throw an exception if cell value is

not a Map.

String getMapKeyStringValue

(int row, JKQLExpr fieldExpr, String

key)

Returns the key value from the specified cell map value

as a String. If the value is not a string, it will be

converted to one. Will throw an exception if cell value is

not a Map.

UsecTimeInterval

getMapKeyTimeIntervalValue

(int row, int column, String

key)

Returns the key value from the specified cell map value

as a UsecTimeInterval. If the value is not a
UsecTimeInterval, it will be converted to one. Will

throw an exception if cell value is not a Map or key’s

value is not a numeric value.

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 146 © 2019–2024 meshIQ

Table 70. ResultSet Instance Methods

UsecTimeInterval

getMapKeyTimeIntervalValue

(int row, String columnName,

String key)

Returns the key value from the specified cell map value

as a UsecTimeInterval. If the value is not a
UsecTimeInterval, it will be converted to one. Will

throw an exception if cell value is not a Map or key’s

value is not a numeric value.

UsecTimeInterval

getMapKeyTimeIntervalValue

(int row, FieldType fieldType,

String key)

Returns the key value from the specified cell map value

as a UsecTimeInterval. If the value is not a
UsecTimeInterval, it will be converted to one. Will

throw an exception if cell value is not a Map or key’s

value is not a numeric value.

UsecTimeInterval

getMapKeyTimeIntervalValue

(int row, JKQLExpr fieldExpr,

String key)

Returns the key value from the specified cell map value

as a UsecTimeInterval. If the value is not a
UsecTimeInterval, it will be converted to one. Will

throw an exception if cell value is not a Map or key’s

value is not a numeric value.

UsecTimestamp

getMapKeyTimestampValue

(int row, int column, String

key)

Returns the key value from the specified cell map value

as a UsecTimestamp. Will throw an exception if cell

value is not a Map or key’s value is not a
UsecTimestamp value.

UsecTimestamp

getMapKeyTimestampValue

(int row, String columnName,

String key)

Returns the key value from the specified cell map value

as a UsecTimestamp. Will throw an exception if cell

value is not a Map or key’s value is not a
UsecTimestamp value.

UsecTimestamp

getMapKeyTimestampValue

(int row, FieldType fieldType,

String key)

Returns the key value from the specified cell map value

as a UsecTimestamp. Will throw an exception if cell

value is not a Map or key’s value is not a
UsecTimestamp value.

UsecTimestamp

getMapKeyTimestampValue

(int row, JKQLExpr fieldExpr,

String key)

Returns the key value from the specified cell map value

as a UsecTimestamp. Will throw an exception if cell

value is not a Map or key’s value is not a
UsecTimestamp value.

Object getMapKeyValue

(int row, int column, String key)

Returns the key value from the specified cell map value.

Will throw an exception if cell value is not a Map.

Object getMapKeyValue

(int row, String columnName, String

key)

Returns the key value from the specified cell map value.

Will throw an exception if cell value is not a Map.

Object getMapKeyValue

(int row, FieldType fieldType, String

key)

Returns the key value from the specified cell map value.

Will throw an exception if cell value is not a Map.

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 147 © 2019–2024 meshIQ

Table 70. ResultSet Instance Methods

Object getMapKeyValue

(int row, JKQLExpr fieldExpr, String

key)

Returns the key value from the specified cell map value.

Will throw an exception if cell value is not a Map.

StatisticsMap getMetrics() Returns the set of metrics related to computing this

result.

String getNextPagingCursor() Returns the cursor to pass with query to retrieve the

next page of results when using Page clause (see Result

Paging).

String getPagingCursor() Returns the cursor corresponding to the page for this

result.

String getQueryDateFilter() Returns the date range filter used to generate this result,

if query is filtering based on date range (including if

default date filter was applied). Format of string is:

<min_date_usec> TO <max_date_usec>

CompCodeType getResultStatus() Returns the status of the result set. If status is

WARNING or ERROR, getStatusMessage() will return

the description/cause of the status.

UsecTimestamp getResultTime() Returns the time the result set was generated.

int getRowCount() Returns the number of rows in the result set.

ItemType getRowItemType() Returns the item type represented by the row

dimension of result set. This is only valid for Compare

statement results (see Compare).

String getRowName(int row) Returns the name of the specified row. This is only valid

for Compare statement results (see Compare).

int getRowNumber(String rowName) Returns the row number of the row with the specified

name. This is only valid for Compare statement results

(see Compare).

long getRowsFound() Returns the number of objects in the underlying data

store that matched the query. Size of result set can be

less than this for various reasons, i.e., using Group By,

Range, Page, etc.

JKQLExpr getRowType(int row) Returns the field expression that this row represents.

This is only valid for Compare statement results (see

Compare).

int[] getSortColumns() Returns list of column numbers on which the result set

was sorted.

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 148 © 2019–2024 meshIQ

Table 70. ResultSet Instance Methods

String getStatusMessage() For result sets with a status of WARNING or ERROR,

returns the description/cause of the status.

String getString

(int row, int column)

Returns the specified cell value as a String. If the value is

not a string, it will be converted to one.

String getString

(int row, String columnName)

Returns the specified cell value as a String. If the value is

not a string, it will be converted to one.

String getString

(int row, FieldType fieldType)

Returns the specified cell value as a String. If the value is

not a string, it will be converted to one.

String getString

(int row, JKQLExpr fieldExpr)

Returns the specified cell value as a String. If the value is

not a string, it will be converted to one.

UsecTimeInterval getTimeInterval

(int row, int column)

Returns the specified cell value as a UsecTimeInterval.

If the value is not a UsecTimeInterval, it will be

converted to one. Will throw an exception if cell value is

not a numeric value.

UsecTimeInterval getTimeInterval

(int row, String columnName)

Returns the specified cell value as a UsecTimeInterval.

If the value is not a UsecTimeInterval, it will be

converted to one. Will throw an exception if cell value is

not a numeric value.

UsecTimeInterval getTimeInterval

(int row, FieldType fieldType)

Returns the specified cell value as a UsecTimeInterval.

If the value is not a UsecTimeInterval, it will be

converted to one. Will throw an exception if cell value is

not a numeric value.

UsecTimeInterval getTimeInterval

(int row, JKQLExpr fieldExpr)

Returns the specified cell value as a UsecTimeInterval.

If the value is not a UsecTimeInterval, it will be

converted to one. Will throw an exception if cell value is

not a numeric value.

UsecTimestamp getTimestamp

(int row, int column)

Returns specified cell value as a UsecTimestamp. Will

throw an exception if cell value is not a UsecTimestamp

value.

UsecTimestamp getTimestamp

(int row, String columnName)

Returns specified cell value as a UsecTimestamp. Will

throw an exception if cell value is not a UsecTimestamp

value.

UsecTimestamp getTimestamp

(int row, FieldType fieldType)

Returns specified cell value as a UsecTimestamp. Will

throw an exception if cell value is not a UsecTimestamp

value.

UsecTimestamp getTimestamp

(int row, JKQLExpr fieldExpr)

Returns specified cell value as a UsecTimestamp. Will

throw an exception if cell value is not a UsecTimestamp

value.

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 149 © 2019–2024 meshIQ

Table 70. ResultSet Instance Methods

JKoolTimeZone getTimeZone() Returns the Time Zone being used to format timestamps

in the result set (does not affect the actual values stored

in result).

long getTotalRowCount() Returns the total number of rows for the query before

applying any Range/Page clauses.

Object getValue

(int row, int column)
Returns the value of the specified cell.

Object getValue

(int row, String columnName)
Returns the value of the specified cell.

Object getValue

(int row, FieldType fieldType)
Returns the value of the specified cell.

Object getValue

(int row, JKQLExpr fieldExpr)
Returns the value of the specified cell.

Set<Object> getValues

(int column)

Returns the set of distinct values for the specified

column.

Set<Object> getValues

(String columnName)

Returns the set of distinct values for the specified

column.

Set<Object> getValues

(FieldType fieldType)

Returns the set of distinct values for the specified

column.

Set<Object> getValues

(JKQLExpr fieldExpr)

Returns the set of distinct values for the specified

column.

void setValue

(int row, int column, Object value)
Sets the value for the specified cell in the result set.

void setValue

(int row, String column, Object value)

Sets the value for the given row in the column with the

specified name. If multiple columns have the same

name, then the value is set for the first column with that

name.

void setValue

(int row, FieldType column, Object

value)

Sets the value for the given row in the column with the

specified FieldType. If multiple columns have the same

FieldType, then the value is set for the first column with

that FieldType.

void setValue

(int row, JKQLExpr column, Object

value)

Sets the value for the given row in the column with the

specified JKQLExpr. If multiple columns have the same

JKQLExpr, then the value is set for the first column with

that JKQLExpr.

void sort(int[] sortCols) Sorts the result set in ascending order based on the

specified columns. To sort a particular column in

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 150 © 2019–2024 meshIQ

UsecTimeInterval

Represents a period of time, in microsecond resolution. This is the implementation of time

interval data type (see Time Intervals).

This type contains the following methods:

Instances of this type also contain the following methods:

Table 70. ResultSet Instance Methods

descending order, specify the column number as a

negative number.

void sort(FieldType[] sortCols) Sorts the result set in ascending order based on the

columns with the specified field types.

Table 71. UsecTimeInterval Methods

UsecTimeInterval

createFromString

(String timeIntervalStr)

Creates a new UsecTimeInterval instance from the

string representation of a time interval.

Table 72. UsecTimeInterval Instance Methods

void add(long usecs) Adds the specified number of microseconds to this

interval.

void add

(int count, CalendarField units)

Adds the specified number of calendar units to this

interval.

number compareTo

(UsecTimeInterval other)

Compares this interval to the specified one, returning a

negative number if this interval is less than specified

one, 0 if the intervals are equal, or a positive number if

this interval is greater than the specified one.

long difference

(UsecTimeInterval other)

Returns the difference in microseconds between this

internal and the specified one.

int getDays() Returns the days component for this interval.

int getFractionalUsecs() Returns the microseconds component for this interval.

int getHours() Returns the hours component for this interval.

long getInterval

(CalendarField units)
Returns the length of this interval in the specified units.

long getIntervalUsec() Returns the length of this interval in microseconds.

int getMinutes() Returns the minutes component of this interval.

int getSeconds() Returns the seconds component of this interval.

long roundTo

(CalendarField units)

Returns the length of this interval rounded down to the

specified units.

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 151 © 2019–2024 meshIQ

UsecTimeOfDay

A specialized UsecTimeInterval that represents a specific time of day, in microsecond

resolution.

This type contains the following methods:

Instances of this type also contain the same methods as defined in UsecTimeInterval.

UsecTimestamp

Represents a specific date and time, with microsecond resolution. This type contains the

following methods:

Instances of this type also contain the following methods:

Table 73. UsecTimeOfDay Methods

UsecTimeOfDay createFromString

(String todStr)

Creates a new UsecTimeOfDay instance from the

string representation of a time interval.

Table 74. UsecTimestamp Methods

UsecTimestamp now() Returns a new UsecTimestamp instance representing

the current system time.

Table 75. UsecTimestamp Instance Methods

void add(number usec) Adds the specified number of microseconds to this time

stamp.

int compareTo

(UsecTimestamp other)

Compares this time stamp to the specified one,

returning a negative number if this time stamp is before

the specified one, 0 if the time stamps are equal, or a

positive number if this time stamp is after the specified

one.

long difference

(UsecTimestamp other)

Returns the difference in microseconds between this

time stamp and the specified one.

long getTimeMillis() Returns numeric value of this time stamp in millisecond

resolution.

long getTimeSec() Returns numeric value of this time stamp in second

resolution.

long getTimeUsec() Returns numeric value of this time stamp in

microsecond resolution.

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 152 © 2019–2024 meshIQ

9.3.2 Functions
The following functions are available to scripts:

Table 76. Script Functions

ActionData getActionData() Gets information about the action that is initiation the

execution of this script.

Activity createActivity() Creates an empty Activity record.

Activity createActivityFromQuery

(ResultSet rs, int row)

Creates an Activity record from the specified row in the

given result set, which is expected to be the result of a

Get Activity… query

Dataset createDataset() Creates an empty Dataset record.

Dataset createDatasetFromQuery

(ResultSet rs, int row)

Creates a Dataset record from the specified row in the

given result set, which is expected to be the result of a

Get Dataset… query

Dictionary createDictionary() Creates an empty Dictionary record.

Dictionary

createDictionaryFromQuery

(ResultSet rs, int row)

Creates a Dictionary record from the specified row in the

given result set, which is expected to be the result of a

Get Dictionary… query

Event createEvent() Creates an empty Event record.

Event createEventFromQuery

(ResultSet rs, int row)

Creates an Event record from the specified row in the

given result set, which is expected to be the result of a

Get Event… query

Log createLog() Creates an empty Log record.

Log createLogFromQuery

(ResultSet rs, int row)

Creates a Log record from the specified row in the given

result set, which is expected to be the result of a Get

Log… query

Resource createResource() Creates an empty Resource record.

Resource createResourceFromQuery

(ResultSet rs, int row)

Creates a Resource record from the specified row in the

given result set, which is expected to be the result of a

Get Resource… query

ResultSet createResult() Creates a new, empty ResultSet object for building a

custom result.

ResultSet createResultForItem

(ItemType itemType)

Creates a new, empty ResultSet object for building a

custom result for the specified ItemType.

Snapshot createSnapshot() Creates an empty Snapshot record.

Snapshot createSnapshotFromQuery

(ResultSet rs, int row)

Creates a Snapshot record from the specified row in the

given result set, which is expected to be the result of a

Get Snapshot… query

Source createSource() Creates an empty Source record.

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 153 © 2019–2024 meshIQ

Table 76. Script Functions

Source createSourceFromQuery

(ResultSet rs, int row)

Creates a Source record from the specified row in the

given result set, which is expected to be the result of a

Get Source… query

ResultSet executeJKQL

(String jkql)

Executes the specified jKQL statement and returns the

result, if any.

ResultSet executeJKQLInRepo

(String repoid, String jkql)

Executes the specified jKQL statement in the given

repository and returns the result, if any. The specified

repository must be in the same organization as the

current repository that script is being run in.

ResultSet executeJKQLOnResult

(String jkql, ResultSet rs)

Executes the specified jKQL statement using the

specified result set as input, and returns the result, if

any.

ResultSet

executeJKQLOnResultInRepo

(String repoid, String jkql, ResultSet rs)

Executes the specified jKQL statement using the

specified result set as input, and returns the result, if

any. The specified repository must be in the same

organization as the current repository that script is

being run in.

String generateUUID() Generates a new UUID.

DataType getDataType

(Object obj)
Returns the jKQL value data type of the specified object

String getDefaultDateFilter() Gets the current default date filter being applied to

queries if query does not contain a date-based filter

ResultSet getInputResult() Gets the input result for the script, which is the result of

the prior statement if this script was executed as part of

a statement chain.

JKoolLocale getLocale() Gets the default locale being applied when formatting or

interpreting dates and times, as well as numeric values.

int getMaxMLRawResultRows() Gets the maximum number of rows that are fetched

from underlying data store to process a ML-based

query.

int getMaxRawResultRows() Gets the maximum number of rows that are fetched

from underlying data store to process a query.

int getMaxResultRows() Gets the maximum number of rows that will be returned

in a query result.

String getScriptName() Gets the name of the current script.

Object getScriptParam

(String paramName)

Returns the value for the specified jKQL script parameter

(see Parameters).

JKoolTimeZone getTimeZone() Gets the default time zone being applied when

formatting or interpreting dates and times.

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 154 © 2019–2024 meshIQ

Table 76. Script Functions

boolean isNull

(Object obj)

Tests whether the specified object is “null” (either

JavaScript null or internal null object).

void logMsg

(SeverityType severity,

 String msg)

Adds an entry to the log table with the specified severity

and log message.

void setDefaultDateFilter

(String filter)

Sets the default date filter to apply to queries if query

does not contain a date-based filter

void setLocale

(JKoolLocale locale)

Sets the default locale to apply when formatting or

interpreting dates and times, as well as numeric values.

void setMaxMLRawResultRows

(int maxMLRawResultRows)

Sets the maximum number of rows to fetch from

underlying data store to process a ML-based query.

void setMaxRawResultRows

(int maxRawResultRows)

Sets the maximum number of rows to fetch from

underlying data store to process a query.

void setMaxResultRows

(int maxResultRows)

Sets the maximum number of rows to return in a query

result.

Object setReturnResult

(Object result)

Sets the specified result value as the return value for the

script. If result is not a ResultSet, the result object will be

wrapped into one, with a single column and a single row.

void setTimeZone

(JKoolTimeZone timezone)

Sets the default time zone to apply when formatting or

interpreting dates and times.

ComparableList toList

(Object obj)

Converts the specified object to a Java List

(ComparableList):

• If already a ComparableList, returns same object

• If a java.util.Collection, returns a ComparableList

containing the same elements as the given

object

• If an array, returns a ComparableList containing

the same elements as the given array

• If a java.util.Map, returns a ComparableList

containing the keys from the given map

• Otherwise, returns a one-element

ComparableList containing the specified object

ComparableSet toSet

(Object obj)

Converts the specified object to a Java Set

(ComparableSet):

• If already a ComparableSet, returns same object

• If a java.util.Collection, returns a ComparableSet

containing the same elements as the given

object

• If an array, returns a ComparableSet containing

the same elements as the given array

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 155 © 2019–2024 meshIQ

9.3.3 Directives
jKQL Script Directives function-like statements to affect the execution of a script. The only

current directive supported is importScript, which loads and evaluates the specified jKQL

Script into the current script. The scripts loaded are intended to be library-type scripts that

define a set of functions to be made available to the currently executing script, even

though this is not enforced.

9.4 Examples

Example 1

This sample script computes the count and the average elapsed time of Events filtering on

the specified filter field and value and grouping on the specified group field. It then takes

the result of this query and writes Dataset entries for each row in the result. Finally, the

script returns the number of Dataset entries written.

var filterField = getScriptParam('FilterField');

var filterValue = getScriptParam('FilterValue');

var groupField = getScriptParam('GroupField');

var rs = executeJKQL('Get Events Fields Count(EventId),

Avg(ElapsedTime)'

 + ' Where ' + filterField + ' = \'' +

filterValue + '\''

 + ' Group By ' + groupField);

Table 76. Script Functions

• If a java.util.Map, returns a ComparableSet

containing the keys from the given map

Otherwise, returns a one-element ComparableSet

containing the specified object

void upsert

(JKQLItem fieldValues)

Creates/Updates the specified jKQL item (Activity, Event,

etc.).

void upsertInRepo

(String repoid, JKQLItem fieldValues)

Creates/Updates the specified jKQL item (Activity, Event,

etc.) in the specified repository. The specified

repository must be in the same organization as the

current repository that script is being run in.

Table 77. Script Directives

importScript(String scriptName) Import and evaluate the contents of the specified jKQL

Script into the currently executing script.

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 156 © 2019–2024 meshIQ

if (rs == null) {

 logMsg(SeverityType.WARNING, 'Query returned no result');

}

else if (rs.getResultStatus() == CompCodeType.ERROR) {

 logMsg(SeverityType.ERROR, 'Query Failed: ' +

rs.getStatusMessage());

}

else {

 var dsTime = UsecTimestamp.now();

 var dataset = createDataset();

 var grpCol = 1;

 var countCol = rs.getColumnNumber('Count(EventId)');

 var avgCol = rs.getColumnNumber('Avg(ElapsedTime)');

 for (var r = 1; r <= rs.getRowCount(); r++) {

 var dsName = 'AvgElapsedBy_' + rs.getValue(r, grpCol);

 dataset.setField(FieldType.DATASET_ID, generateUUID());

 dataset.setField(FieldType.DATASET_NAME, dsName);

 dataset.setField(FieldType.DATASET_TIME, dsTime);

 dataset.setMapFieldKey(FieldType.PROPERTIES, "Count",

 rs.getValue(r, countCol));

 dataset.setMapFieldKey(FieldType.PROPERTIES, "Average",

 rs.getValue(r, avgCol));

 upsert(dataset);

 }

 setReturnResult(rs.getRowCount());

}

Example 2

This sample shows a Script that is intended to be invoked on the result of a query.

var scriptName = getScriptName();

var actionInfo = getActionData();

var actionResult = getInputResult();

jKQL User’s Guide Chapter 9: jKQL Scripts

JKQLUG11.008 157 © 2019–2024 meshIQ

if (actionInfo == null) {

 logMsg(SeverityType.ERROR, "Script " + scriptName

 + " fired from action with no action data");

}

else {

 var actionName = actionInfo.getActionName();

 var actionTime = actionInfo.getTime();

 var actionPropsMap = actionInfo.getActionProperties();

 var msg = "Script " + scriptName

 + " fired as a result of "

 + " invoking action " + actionName;

 if (actionResult == null)

 msg += ", input result is null";

 else

 msg += ", action.item.count=" + actionResult.getRowCount();

 logMsg(SeverityType.INFO, msg);

}

jKQL User’s Guide Index

JKQLUG11.008 158 © 2019–2024 meshIQ

Index

A

Access Control ... 88

Access Tokens ... 96

Options .. 91, 93

Action.. 78

Actions .. 5

Activities ... 3

Acts On ... 74

Admin Item Names ... 91

Admin Statement Syntax ... 93

Alter .. 94

Common Elements ... 93

Create .. 94

Drop ... 94

Administration ... 91

Administrators... 89

Alerts .. 76

Alter .. 94

Arithmetic Operators .. 17

B

Based On .. 21

BINARY ... 9

BOOLEAN ... 9

Built-in Aggregate Functions.................................... 30

Built-in Analytic Functions .. 34

Built-in Provider Types ... 76

Built-in Spanning Functions 28

C

CLOB ... 9

Common Elements ... 37, 93

Compare .. 56

Comparison Operators .. 17

Computed Fields ... 75

Concepts .. 70

Create ... 94

Criteria .. 4, 67

D

Data Model .. 3, 114

Administration .. 91

Licensing .. 99, 104

Data Types ... 9

Date and Time Expressions 13

Date and Time Functions ... 27

Dates and Times ... 11

DECIMAL ... 9

Delete ... 58

Dictionaries .. 3

Disable / Enable .. 59

Drop .. 94

E

Effective License .. 99

Effective Role ... 69, 88

Effective Values ... 101

EmailProvider .. 76

Enable / Disable .. 59

Encloses ... 73

Entities .. 88

ENUM ... 9

Enumeration Methods ... 116

Events ... 3

Extending ... 104

External Action Provider Types 110

External Data Source .. 104

External jKQL Functions ... 112

F

Features ... 99, 100

Fields... 3, 6

FileProvider .. 76, 77

Filters .. 39

Find ... 54

Formatting ... 78

Functions .. 23

Built-in Aggregate 30, 53, 139, 140

Built-in Analytic ... 34

Built-in Scalar .. 24

Built-in Spanning 28, 139, 140

Date and Time .. 27

General .. 24

Numeric ... 24

String .. 25

G

General Functions ... 24

Generic jKQL Statement ... 69

Get .. 44

Get Info... 49, 51

Get Relatives .. 48

Grant ... 60

jKQL User’s Guide Index

JKQLUG11.008 159 © 2019–2024 meshIQ

I

Input Data Rules .. 5

Insert .. 57

INTEGER ... 9

Items ... 3, 88

J

jKQL Fields ... 91, 100

jKQL Generic Statement ... 69

Jobs ... 5

L

Levels .. 88

License.. 100

Effective License ... 99

Load License ... 103

Licensing .. 99, 104

Limitations ... 84, 87

Limiting Operators .. 20

Literals .. 10

Loading Statement Syntax 103

Logs .. 5

M

Machine Learning ... 36

MAP... 9

Maps ... 9

Membership .. 89

N

Numeric Functions .. 24

O

Objectives .. 67, 73

Operation ... 89, 90

Operators

Arithmetic .. 17

Based On ... 21

Comparison ... 17

Limiting .. 20

Result Grouping Modifiers 22

P

Primary Key Fields... 65

Provider Type .. 76

Q

Quotas .. 100

R

Relatives ... 4, 73

Acts On .. 74

Encloses ... 73

Send To .. 74

Reset ... 59

Resources... 3

Result Grouping Modifiers 22

Result Paging ... 41

Revoke .. 61

S

Scripts ... 114

Searching ... 71

Send To .. 74

Sequence ... 4

Set Membership .. 72

Sets ... 4

SetSequence .. 69

SignIn .. 43

Snapshots .. 3

Sources ... 3

Statement Options .. 42

Statement Syntax .. 103

String .. 9

String Functions .. 25

Supported Quotas .. 100

T

Time Intervals .. 12

TIMEINTERVAL ... 9

TIMESTAMP .. 9

Token Actions

Admin... 92

Delete ... 92

Modify .. 92

Query ... 92

Stream ... 91, 93

U

Update .. 57

Upsert ... 57

Use .. 44

V

VARIANT ... 9

View Queries .. 81

Views... 5, 49, 69, 81

ViewTemplates .. 5, 81, 84

Volumes ... 95

jKQL User’s Guide Index

JKQLUG11.008 160 © 2019–2024 meshIQ

	Chapter 1: Introduction
	1.1 How this Guide is Organized
	1.2 History of this Document

	Chapter 2: Data Model
	2.1 Definitions
	2.2 Item Type Overview
	2.3 Fields

	Chapter 3: jKQL
	3.1 Data Types
	3.1.1 Maps
	3.1.2 Variants

	3.2 jKQL Expressions
	3.2.1 Literals
	3.2.1.1 Dates and Times
	3.2.1.2 Time Intervals

	3.2.2 Date and Time Expressions
	3.2.3 Operators

	3.3 Functions
	3.3.1 Built-in Scalar Functions
	3.3.2 Built-in Spanning Functions
	3.3.3 Built-in Aggregate Functions
	3.3.4 Built-in Analytic Functions
	3.3.4.1 Machine Learning Functions

	3.4 Statement Syntax
	3.4.1 Common Elements
	3.4.1.1 Filters
	3.4.1.2 Result Paging
	3.4.1.3 Statement Options

	3.4.2 SignIn
	3.4.3 Use
	3.4.4 Get
	3.4.4.1 Get Relatives
	3.4.4.2 Get Info
	3.4.4.3 Get Concepts
	3.4.4.3.1 Result Limiting
	3.4.4.3.2 Result Grouping
	3.4.4.3.3 Result Sorting

	3.4.5 Find
	3.4.6 Compare
	3.4.7 Insert, Update, Upsert
	3.4.8 Delete
	3.4.9 Reset
	3.4.10 Enable / Disable
	3.4.11 Grant
	3.4.12 Revoke
	3.4.13 Purge
	3.4.14 Compute
	3.4.15 Invoke
	3.4.16 Train

	3.5 jKQL Fields
	3.5.1 Primary Key Fields
	3.5.2 Fully Qualified Name (FQN)
	3.5.3 Criteria
	3.5.4 Objectives
	3.5.5 SetSequence
	3.5.6 jKQL (Generic jKQL Statement)
	3.5.7 EffectiveRole

	Chapter 4: Concepts
	4.1 Implicit Date Filtering
	4.2 Searching
	4.3 Set Membership
	4.3.1 Objectives

	4.4 Relatives
	4.4.1 Encloses
	4.4.2 Send To
	4.4.3 Acts On
	4.4.4 Correlated

	4.5 Computed Fields
	4.6 Actions
	4.6.1 Provider Type
	4.6.1.1 Built-in Provider Types

	4.6.2 Action
	4.6.3 Formatting

	4.7 Views and ViewTemplates
	4.7.1 View Queries
	4.7.2 Schedule
	4.7.3 Result History
	4.7.4 Options
	4.7.5 Limitations

	4.8 Statement Chains
	4.8.1 Examples
	4.8.1.1 Filter based on prior query
	4.8.1.2 Run Analytic Function on prior query
	4.8.1.3 Invoke Action, jKQL Script in Chain
	4.8.1.4 Query for items based on other items

	4.8.2 Limitations

	Chapter 5: Access Control
	5.1 Levels
	5.2 Effective Roles
	5.3 Entities
	5.4 Items
	5.5 Membership
	5.6 Administrators
	5.7 Operation
	5.8 Inquiries

	Chapter 6: Administration
	6.1 Data Model
	6.2 jKQL Fields
	6.2.1 Admin Item Names
	6.2.2 Access Token Options
	6.2.3 Repository Options
	6.2.4 Access Token Quotas

	6.3 Admin Statement Syntax
	6.3.1 Common Elements
	6.3.2 Create
	6.3.3 Alter
	6.3.4 Drop

	6.4 Volumes
	6.5 Access Tokens

	Chapter 7: Licensing
	7.1 Data Model
	7.1.1 Features
	7.1.2 Effective License

	7.2 jKQL Fields
	7.2.1 License
	7.2.2 Features
	7.2.3 Quotas
	7.2.4 Effective Values

	7.3 Load Statement Syntax

	Chapter 8: Extending jKQL
	8.1 External Data Source
	8.1.1 External Data Source Definition
	8.1.2 External Field Types
	8.1.3 External Item Types
	8.1.4 External Item Fields
	8.1.5 Synonyms
	8.1.6 Configuration
	8.1.7 Example

	8.2 External Action Provider Types
	8.2.1 Provider Type Definition
	8.2.2 Provider Type Properties
	8.2.3 Configuration
	8.2.4 Example

	8.3 External jKQL Functions
	8.3.1 Function Definition
	8.3.2 Configuration
	8.3.3 Example

	Chapter 9: jKQL Scripts
	9.1 Defining
	9.1.1 Parameters
	9.1.2 Options

	9.2 Executing jKQL Scripts
	9.3 API Reference
	9.3.1 Types
	9.3.1.1 Enumerations
	AccessType
	ActiveItemType
	ActivityStatusType
	CalendarField
	CompCodeType
	DataType
	EventType
	FieldType
	IntervalType
	ItemType
	JKQLInfoType
	JobStatusType
	LimitType
	LogType
	MarginType
	ParameterType
	RelativeType
	RepoOptionType
	SetOptionType
	SetScopeType
	SeverityType
	StatementType
	StmtOptionType
	Tnt4jSourceType
	TokenOptionType

	9.3.1.2 Types
	ActionData
	ComparableList
	ComparableMap
	ComparableSet
	JKoolLocale
	JKoolTimeZone
	JKQLException
	JKQLExpr
	ColHdrExpr
	FieldExpr
	FunctionExpr
	ValueExpr

	JKQLExprList
	JKQLItem
	Range
	ResultSet
	UsecTimeInterval
	UsecTimeOfDay
	UsecTimestamp

	9.3.2 Functions
	9.3.3 Directives

	9.4 Examples

	Index

